mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-11 04:08:09 +03:00
3358fb9bdd
* MultiHashEmbed vector docs correction * doc copy span test * ignore empty lists in DocBin.span_groups * serialized empty list const + SpanGroups.is_empty * add conditional deserial on from_bytes * clean up + reorganize * rm test * add constant as class attribute * rename to _EMPTY_BYTES * Update spacy/tests/doc/test_span.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
671 lines
23 KiB
Python
671 lines
23 KiB
Python
import pytest
|
|
import numpy
|
|
from numpy.testing import assert_array_equal
|
|
|
|
from spacy.attrs import ORTH, LENGTH
|
|
from spacy.lang.en import English
|
|
from spacy.tokens import Doc, Span, Token
|
|
from spacy.vocab import Vocab
|
|
from spacy.util import filter_spans
|
|
from thinc.api import get_current_ops
|
|
|
|
from ..util import add_vecs_to_vocab
|
|
from .test_underscore import clean_underscore # noqa: F401
|
|
|
|
|
|
@pytest.fixture
|
|
def doc(en_tokenizer):
|
|
# fmt: off
|
|
text = "This is a sentence. This is another sentence. And a third."
|
|
heads = [1, 1, 3, 1, 1, 6, 6, 8, 6, 6, 12, 12, 12, 12]
|
|
deps = ["nsubj", "ROOT", "det", "attr", "punct", "nsubj", "ROOT", "det",
|
|
"attr", "punct", "ROOT", "det", "npadvmod", "punct"]
|
|
ents = ["O", "O", "B-ENT", "I-ENT", "I-ENT", "I-ENT", "I-ENT", "O", "O",
|
|
"O", "O", "O", "O", "O"]
|
|
# fmt: on
|
|
tokens = en_tokenizer(text)
|
|
lemmas = [t.text for t in tokens] # this is not correct, just a placeholder
|
|
spaces = [bool(t.whitespace_) for t in tokens]
|
|
return Doc(
|
|
tokens.vocab,
|
|
words=[t.text for t in tokens],
|
|
spaces=spaces,
|
|
heads=heads,
|
|
deps=deps,
|
|
ents=ents,
|
|
lemmas=lemmas,
|
|
)
|
|
|
|
|
|
@pytest.fixture
|
|
def doc_not_parsed(en_tokenizer):
|
|
text = "This is a sentence. This is another sentence. And a third."
|
|
tokens = en_tokenizer(text)
|
|
doc = Doc(tokens.vocab, words=[t.text for t in tokens])
|
|
return doc
|
|
|
|
|
|
@pytest.mark.issue(1537)
|
|
def test_issue1537():
|
|
"""Test that Span.as_doc() doesn't segfault."""
|
|
string = "The sky is blue . The man is pink . The dog is purple ."
|
|
doc = Doc(Vocab(), words=string.split())
|
|
doc[0].sent_start = True
|
|
for word in doc[1:]:
|
|
if word.nbor(-1).text == ".":
|
|
word.sent_start = True
|
|
else:
|
|
word.sent_start = False
|
|
sents = list(doc.sents)
|
|
sent0 = sents[0].as_doc()
|
|
sent1 = sents[1].as_doc()
|
|
assert isinstance(sent0, Doc)
|
|
assert isinstance(sent1, Doc)
|
|
|
|
|
|
@pytest.mark.issue(1612)
|
|
def test_issue1612(en_tokenizer):
|
|
"""Test that span.orth_ is identical to span.text"""
|
|
doc = en_tokenizer("The black cat purrs.")
|
|
span = doc[1:3]
|
|
assert span.orth_ == span.text
|
|
|
|
|
|
@pytest.mark.issue(3199)
|
|
def test_issue3199():
|
|
"""Test that Span.noun_chunks works correctly if no noun chunks iterator
|
|
is available. To make this test future-proof, we're constructing a Doc
|
|
with a new Vocab here and a parse tree to make sure the noun chunks run.
|
|
"""
|
|
words = ["This", "is", "a", "sentence"]
|
|
doc = Doc(Vocab(), words=words, heads=[0] * len(words), deps=["dep"] * len(words))
|
|
with pytest.raises(NotImplementedError):
|
|
list(doc[0:3].noun_chunks)
|
|
|
|
|
|
@pytest.mark.issue(5152)
|
|
def test_issue5152():
|
|
# Test that the comparison between a Span and a Token, goes well
|
|
# There was a bug when the number of tokens in the span equaled the number of characters in the token (!)
|
|
nlp = English()
|
|
text = nlp("Talk about being boring!")
|
|
text_var = nlp("Talk of being boring!")
|
|
y = nlp("Let")
|
|
span = text[0:3] # Talk about being
|
|
span_2 = text[0:3] # Talk about being
|
|
span_3 = text_var[0:3] # Talk of being
|
|
token = y[0] # Let
|
|
with pytest.warns(UserWarning):
|
|
assert span.similarity(token) == 0.0
|
|
assert span.similarity(span_2) == 1.0
|
|
with pytest.warns(UserWarning):
|
|
assert span_2.similarity(span_3) < 1.0
|
|
|
|
|
|
@pytest.mark.issue(6755)
|
|
def test_issue6755(en_tokenizer):
|
|
doc = en_tokenizer("This is a magnificent sentence.")
|
|
span = doc[:0]
|
|
assert span.text_with_ws == ""
|
|
assert span.text == ""
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"sentence, start_idx,end_idx,label",
|
|
[("Welcome to Mumbai, my friend", 11, 17, "GPE")],
|
|
)
|
|
@pytest.mark.issue(6815)
|
|
def test_issue6815_1(sentence, start_idx, end_idx, label):
|
|
nlp = English()
|
|
doc = nlp(sentence)
|
|
span = doc[:].char_span(start_idx, end_idx, label=label)
|
|
assert span.label_ == label
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"sentence, start_idx,end_idx,kb_id", [("Welcome to Mumbai, my friend", 11, 17, 5)]
|
|
)
|
|
@pytest.mark.issue(6815)
|
|
def test_issue6815_2(sentence, start_idx, end_idx, kb_id):
|
|
nlp = English()
|
|
doc = nlp(sentence)
|
|
span = doc[:].char_span(start_idx, end_idx, kb_id=kb_id)
|
|
assert span.kb_id == kb_id
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"sentence, start_idx,end_idx,vector",
|
|
[("Welcome to Mumbai, my friend", 11, 17, numpy.array([0.1, 0.2, 0.3]))],
|
|
)
|
|
@pytest.mark.issue(6815)
|
|
def test_issue6815_3(sentence, start_idx, end_idx, vector):
|
|
nlp = English()
|
|
doc = nlp(sentence)
|
|
span = doc[:].char_span(start_idx, end_idx, vector=vector)
|
|
assert (span.vector == vector).all()
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"i_sent,i,j,text",
|
|
[
|
|
(0, 0, len("This is a"), "This is a"),
|
|
(1, 0, len("This is another"), "This is another"),
|
|
(2, len("And "), len("And ") + len("a third"), "a third"),
|
|
(0, 1, 2, None),
|
|
],
|
|
)
|
|
def test_char_span(doc, i_sent, i, j, text):
|
|
sents = list(doc.sents)
|
|
span = sents[i_sent].char_span(i, j)
|
|
if not text:
|
|
assert not span
|
|
else:
|
|
assert span.text == text
|
|
|
|
|
|
def test_spans_sent_spans(doc):
|
|
sents = list(doc.sents)
|
|
assert sents[0].start == 0
|
|
assert sents[0].end == 5
|
|
assert len(sents) == 3
|
|
assert sum(len(sent) for sent in sents) == len(doc)
|
|
|
|
|
|
def test_spans_root(doc):
|
|
span = doc[2:4]
|
|
assert len(span) == 2
|
|
assert span.text == "a sentence"
|
|
assert span.root.text == "sentence"
|
|
assert span.root.head.text == "is"
|
|
|
|
|
|
def test_spans_string_fn(doc):
|
|
span = doc[0:4]
|
|
assert len(span) == 4
|
|
assert span.text == "This is a sentence"
|
|
|
|
|
|
def test_spans_root2(en_tokenizer):
|
|
text = "through North and South Carolina"
|
|
heads = [0, 4, 1, 1, 0]
|
|
deps = ["dep"] * len(heads)
|
|
tokens = en_tokenizer(text)
|
|
doc = Doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
|
|
assert doc[-2:].root.text == "Carolina"
|
|
|
|
|
|
def test_spans_span_sent(doc, doc_not_parsed):
|
|
"""Test span.sent property"""
|
|
assert len(list(doc.sents))
|
|
assert doc[:2].sent.root.text == "is"
|
|
assert doc[:2].sent.text == "This is a sentence."
|
|
assert doc[6:7].sent.root.left_edge.text == "This"
|
|
assert doc[0 : len(doc)].sent == list(doc.sents)[0]
|
|
assert list(doc[0 : len(doc)].sents) == list(doc.sents)
|
|
|
|
with pytest.raises(ValueError):
|
|
doc_not_parsed[:2].sent
|
|
|
|
# test on manual sbd
|
|
doc_not_parsed[0].is_sent_start = True
|
|
doc_not_parsed[5].is_sent_start = True
|
|
assert doc_not_parsed[1:3].sent == doc_not_parsed[0:5]
|
|
assert doc_not_parsed[10:14].sent == doc_not_parsed[5:]
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"start,end,expected_sentence",
|
|
[
|
|
(0, 14, "This is"), # Entire doc
|
|
(1, 4, "This is"), # Overlapping with 2 sentences
|
|
(0, 2, "This is"), # Beginning of the Doc. Full sentence
|
|
(0, 1, "This is"), # Beginning of the Doc. Part of a sentence
|
|
(10, 14, "And a"), # End of the Doc. Overlapping with 2 senteces
|
|
(12, 14, "third."), # End of the Doc. Full sentence
|
|
(1, 1, "This is"), # Empty Span
|
|
],
|
|
)
|
|
def test_spans_span_sent_user_hooks(doc, start, end, expected_sentence):
|
|
|
|
# Doc-level sents hook
|
|
def user_hook(doc):
|
|
return [doc[ii : ii + 2] for ii in range(0, len(doc), 2)]
|
|
|
|
doc.user_hooks["sents"] = user_hook
|
|
|
|
# Make sure doc-level sents hook works
|
|
assert doc[start:end].sent.text == expected_sentence
|
|
|
|
# Span-level sent hook
|
|
doc.user_span_hooks["sent"] = lambda x: x
|
|
# Now, span=level sent hook overrides the doc-level sents hook
|
|
assert doc[start:end].sent == doc[start:end]
|
|
|
|
|
|
def test_spans_lca_matrix(en_tokenizer):
|
|
"""Test span's lca matrix generation"""
|
|
tokens = en_tokenizer("the lazy dog slept")
|
|
doc = Doc(
|
|
tokens.vocab,
|
|
words=[t.text for t in tokens],
|
|
heads=[2, 2, 3, 3],
|
|
deps=["dep"] * 4,
|
|
)
|
|
lca = doc[:2].get_lca_matrix()
|
|
assert lca.shape == (2, 2)
|
|
assert lca[0, 0] == 0 # the & the -> the
|
|
assert lca[0, 1] == -1 # the & lazy -> dog (out of span)
|
|
assert lca[1, 0] == -1 # lazy & the -> dog (out of span)
|
|
assert lca[1, 1] == 1 # lazy & lazy -> lazy
|
|
|
|
lca = doc[1:].get_lca_matrix()
|
|
assert lca.shape == (3, 3)
|
|
assert lca[0, 0] == 0 # lazy & lazy -> lazy
|
|
assert lca[0, 1] == 1 # lazy & dog -> dog
|
|
assert lca[0, 2] == 2 # lazy & slept -> slept
|
|
|
|
lca = doc[2:].get_lca_matrix()
|
|
assert lca.shape == (2, 2)
|
|
assert lca[0, 0] == 0 # dog & dog -> dog
|
|
assert lca[0, 1] == 1 # dog & slept -> slept
|
|
assert lca[1, 0] == 1 # slept & dog -> slept
|
|
assert lca[1, 1] == 1 # slept & slept -> slept
|
|
|
|
# example from Span API docs
|
|
tokens = en_tokenizer("I like New York in Autumn")
|
|
doc = Doc(
|
|
tokens.vocab,
|
|
words=[t.text for t in tokens],
|
|
heads=[1, 1, 3, 1, 3, 4],
|
|
deps=["dep"] * len(tokens),
|
|
)
|
|
lca = doc[1:4].get_lca_matrix()
|
|
assert_array_equal(lca, numpy.asarray([[0, 0, 0], [0, 1, 2], [0, 2, 2]]))
|
|
|
|
|
|
def test_span_similarity_match():
|
|
doc = Doc(Vocab(), words=["a", "b", "a", "b"])
|
|
span1 = doc[:2]
|
|
span2 = doc[2:]
|
|
with pytest.warns(UserWarning):
|
|
assert span1.similarity(span2) == 1.0
|
|
assert span1.similarity(doc) == 0.0
|
|
assert span1[:1].similarity(doc.vocab["a"]) == 1.0
|
|
|
|
|
|
def test_spans_default_sentiment(en_tokenizer):
|
|
"""Test span.sentiment property's default averaging behaviour"""
|
|
text = "good stuff bad stuff"
|
|
tokens = en_tokenizer(text)
|
|
tokens.vocab[tokens[0].text].sentiment = 3.0
|
|
tokens.vocab[tokens[2].text].sentiment = -2.0
|
|
doc = Doc(tokens.vocab, words=[t.text for t in tokens])
|
|
assert doc[:2].sentiment == 3.0 / 2
|
|
assert doc[-2:].sentiment == -2.0 / 2
|
|
assert doc[:-1].sentiment == (3.0 + -2) / 3.0
|
|
|
|
|
|
def test_spans_override_sentiment(en_tokenizer):
|
|
"""Test span.sentiment property's default averaging behaviour"""
|
|
text = "good stuff bad stuff"
|
|
tokens = en_tokenizer(text)
|
|
tokens.vocab[tokens[0].text].sentiment = 3.0
|
|
tokens.vocab[tokens[2].text].sentiment = -2.0
|
|
doc = Doc(tokens.vocab, words=[t.text for t in tokens])
|
|
doc.user_span_hooks["sentiment"] = lambda span: 10.0
|
|
assert doc[:2].sentiment == 10.0
|
|
assert doc[-2:].sentiment == 10.0
|
|
assert doc[:-1].sentiment == 10.0
|
|
|
|
|
|
def test_spans_are_hashable(en_tokenizer):
|
|
"""Test spans can be hashed."""
|
|
text = "good stuff bad stuff"
|
|
tokens = en_tokenizer(text)
|
|
span1 = tokens[:2]
|
|
span2 = tokens[2:4]
|
|
assert hash(span1) != hash(span2)
|
|
span3 = tokens[0:2]
|
|
assert hash(span3) == hash(span1)
|
|
|
|
|
|
def test_spans_by_character(doc):
|
|
span1 = doc[1:-2]
|
|
|
|
# default and specified alignment mode "strict"
|
|
span2 = doc.char_span(span1.start_char, span1.end_char, label="GPE")
|
|
assert span1.start_char == span2.start_char
|
|
assert span1.end_char == span2.end_char
|
|
assert span2.label_ == "GPE"
|
|
|
|
span2 = doc.char_span(
|
|
span1.start_char, span1.end_char, label="GPE", alignment_mode="strict"
|
|
)
|
|
assert span1.start_char == span2.start_char
|
|
assert span1.end_char == span2.end_char
|
|
assert span2.label_ == "GPE"
|
|
|
|
# alignment mode "contract"
|
|
span2 = doc.char_span(
|
|
span1.start_char - 3, span1.end_char, label="GPE", alignment_mode="contract"
|
|
)
|
|
assert span1.start_char == span2.start_char
|
|
assert span1.end_char == span2.end_char
|
|
assert span2.label_ == "GPE"
|
|
|
|
# alignment mode "expand"
|
|
span2 = doc.char_span(
|
|
span1.start_char + 1, span1.end_char, label="GPE", alignment_mode="expand"
|
|
)
|
|
assert span1.start_char == span2.start_char
|
|
assert span1.end_char == span2.end_char
|
|
assert span2.label_ == "GPE"
|
|
|
|
# unsupported alignment mode
|
|
with pytest.raises(ValueError):
|
|
span2 = doc.char_span(
|
|
span1.start_char + 1, span1.end_char, label="GPE", alignment_mode="unk"
|
|
)
|
|
|
|
|
|
def test_span_to_array(doc):
|
|
span = doc[1:-2]
|
|
arr = span.to_array([ORTH, LENGTH])
|
|
assert arr.shape == (len(span), 2)
|
|
assert arr[0, 0] == span[0].orth
|
|
assert arr[0, 1] == len(span[0])
|
|
|
|
|
|
def test_span_as_doc(doc):
|
|
span = doc[4:10]
|
|
span_doc = span.as_doc()
|
|
assert span.text == span_doc.text.strip()
|
|
assert isinstance(span_doc, doc.__class__)
|
|
assert span_doc is not doc
|
|
assert span_doc[0].idx == 0
|
|
|
|
# partial initial entity is removed
|
|
assert len(span_doc.ents) == 0
|
|
|
|
# full entity is preserved
|
|
span_doc = doc[2:10].as_doc()
|
|
assert len(span_doc.ents) == 1
|
|
|
|
# partial final entity is removed
|
|
span_doc = doc[0:5].as_doc()
|
|
assert len(span_doc.ents) == 0
|
|
|
|
|
|
@pytest.mark.usefixtures("clean_underscore")
|
|
def test_span_as_doc_user_data(doc):
|
|
"""Test that the user_data can be preserved (but not by default)."""
|
|
my_key = "my_info"
|
|
my_value = 342
|
|
doc.user_data[my_key] = my_value
|
|
Token.set_extension("is_x", default=False)
|
|
doc[7]._.is_x = True
|
|
|
|
span = doc[4:10]
|
|
span_doc_with = span.as_doc(copy_user_data=True)
|
|
span_doc_without = span.as_doc()
|
|
|
|
assert doc.user_data.get(my_key, None) is my_value
|
|
assert span_doc_with.user_data.get(my_key, None) is my_value
|
|
assert span_doc_without.user_data.get(my_key, None) is None
|
|
for i in range(len(span_doc_with)):
|
|
if i != 3:
|
|
assert span_doc_with[i]._.is_x is False
|
|
else:
|
|
assert span_doc_with[i]._.is_x is True
|
|
assert not any([t._.is_x for t in span_doc_without])
|
|
|
|
|
|
def test_span_string_label_kb_id(doc):
|
|
span = Span(doc, 0, 1, label="hello", kb_id="Q342")
|
|
assert span.label_ == "hello"
|
|
assert span.label == doc.vocab.strings["hello"]
|
|
assert span.kb_id_ == "Q342"
|
|
assert span.kb_id == doc.vocab.strings["Q342"]
|
|
|
|
|
|
def test_span_attrs_writable(doc):
|
|
span = Span(doc, 0, 1)
|
|
span.label_ = "label"
|
|
span.kb_id_ = "kb_id"
|
|
|
|
|
|
def test_span_ents_property(doc):
|
|
doc.ents = [
|
|
(doc.vocab.strings["PRODUCT"], 0, 1),
|
|
(doc.vocab.strings["PRODUCT"], 7, 8),
|
|
(doc.vocab.strings["PRODUCT"], 11, 14),
|
|
]
|
|
assert len(list(doc.ents)) == 3
|
|
sentences = list(doc.sents)
|
|
assert len(sentences) == 3
|
|
assert len(sentences[0].ents) == 1
|
|
# First sentence, also tests start of sentence
|
|
assert sentences[0].ents[0].text == "This"
|
|
assert sentences[0].ents[0].label_ == "PRODUCT"
|
|
assert sentences[0].ents[0].start == 0
|
|
assert sentences[0].ents[0].end == 1
|
|
# Second sentence
|
|
assert len(sentences[1].ents) == 1
|
|
assert sentences[1].ents[0].text == "another"
|
|
assert sentences[1].ents[0].label_ == "PRODUCT"
|
|
assert sentences[1].ents[0].start == 7
|
|
assert sentences[1].ents[0].end == 8
|
|
# Third sentence ents, Also tests end of sentence
|
|
assert sentences[2].ents[0].text == "a third."
|
|
assert sentences[2].ents[0].label_ == "PRODUCT"
|
|
assert sentences[2].ents[0].start == 11
|
|
assert sentences[2].ents[0].end == 14
|
|
|
|
|
|
def test_filter_spans(doc):
|
|
# Test filtering duplicates
|
|
spans = [doc[1:4], doc[6:8], doc[1:4], doc[10:14]]
|
|
filtered = filter_spans(spans)
|
|
assert len(filtered) == 3
|
|
assert filtered[0].start == 1 and filtered[0].end == 4
|
|
assert filtered[1].start == 6 and filtered[1].end == 8
|
|
assert filtered[2].start == 10 and filtered[2].end == 14
|
|
# Test filtering overlaps with longest preference
|
|
spans = [doc[1:4], doc[1:3], doc[5:10], doc[7:9], doc[1:4]]
|
|
filtered = filter_spans(spans)
|
|
assert len(filtered) == 2
|
|
assert len(filtered[0]) == 3
|
|
assert len(filtered[1]) == 5
|
|
assert filtered[0].start == 1 and filtered[0].end == 4
|
|
assert filtered[1].start == 5 and filtered[1].end == 10
|
|
# Test filtering overlaps with earlier preference for identical length
|
|
spans = [doc[1:4], doc[2:5], doc[5:10], doc[7:9], doc[1:4]]
|
|
filtered = filter_spans(spans)
|
|
assert len(filtered) == 2
|
|
assert len(filtered[0]) == 3
|
|
assert len(filtered[1]) == 5
|
|
assert filtered[0].start == 1 and filtered[0].end == 4
|
|
assert filtered[1].start == 5 and filtered[1].end == 10
|
|
|
|
|
|
def test_span_eq_hash(doc, doc_not_parsed):
|
|
assert doc[0:2] == doc[0:2]
|
|
assert doc[0:2] != doc[1:3]
|
|
assert doc[0:2] != doc_not_parsed[0:2]
|
|
assert hash(doc[0:2]) == hash(doc[0:2])
|
|
assert hash(doc[0:2]) != hash(doc[1:3])
|
|
assert hash(doc[0:2]) != hash(doc_not_parsed[0:2])
|
|
|
|
# check that an out-of-bounds is not equivalent to the span of the full doc
|
|
assert doc[0 : len(doc)] != doc[len(doc) : len(doc) + 1]
|
|
|
|
|
|
def test_span_boundaries(doc):
|
|
start = 1
|
|
end = 5
|
|
span = doc[start:end]
|
|
for i in range(start, end):
|
|
assert span[i - start] == doc[i]
|
|
with pytest.raises(IndexError):
|
|
span[-5]
|
|
with pytest.raises(IndexError):
|
|
span[5]
|
|
|
|
empty_span_0 = doc[0:0]
|
|
assert empty_span_0.text == ""
|
|
assert empty_span_0.start == 0
|
|
assert empty_span_0.end == 0
|
|
assert empty_span_0.start_char == 0
|
|
assert empty_span_0.end_char == 0
|
|
|
|
empty_span_1 = doc[1:1]
|
|
assert empty_span_1.text == ""
|
|
assert empty_span_1.start == 1
|
|
assert empty_span_1.end == 1
|
|
assert empty_span_1.start_char == empty_span_1.end_char
|
|
|
|
oob_span_start = doc[-len(doc) - 1 : -len(doc) - 10]
|
|
assert oob_span_start.text == ""
|
|
assert oob_span_start.start == 0
|
|
assert oob_span_start.end == 0
|
|
assert oob_span_start.start_char == 0
|
|
assert oob_span_start.end_char == 0
|
|
|
|
oob_span_end = doc[len(doc) + 1 : len(doc) + 10]
|
|
assert oob_span_end.text == ""
|
|
assert oob_span_end.start == len(doc)
|
|
assert oob_span_end.end == len(doc)
|
|
assert oob_span_end.start_char == len(doc.text)
|
|
assert oob_span_end.end_char == len(doc.text)
|
|
|
|
|
|
def test_span_lemma(doc):
|
|
# span lemmas should have the same number of spaces as the span
|
|
sp = doc[1:5]
|
|
assert len(sp.text.split(" ")) == len(sp.lemma_.split(" "))
|
|
|
|
|
|
def test_sent(en_tokenizer):
|
|
doc = en_tokenizer("Check span.sent raises error if doc is not sentencized.")
|
|
span = doc[1:3]
|
|
assert not span.doc.has_annotation("SENT_START")
|
|
with pytest.raises(ValueError):
|
|
span.sent
|
|
|
|
|
|
def test_span_with_vectors(doc):
|
|
ops = get_current_ops()
|
|
prev_vectors = doc.vocab.vectors
|
|
vectors = [
|
|
("apple", ops.asarray([1, 2, 3])),
|
|
("orange", ops.asarray([-1, -2, -3])),
|
|
("And", ops.asarray([-1, -1, -1])),
|
|
("juice", ops.asarray([5, 5, 10])),
|
|
("pie", ops.asarray([7, 6.3, 8.9])),
|
|
]
|
|
add_vecs_to_vocab(doc.vocab, vectors)
|
|
# 0-length span
|
|
assert_array_equal(ops.to_numpy(doc[0:0].vector), numpy.zeros((3,)))
|
|
# longer span with no vector
|
|
assert_array_equal(ops.to_numpy(doc[0:4].vector), numpy.zeros((3,)))
|
|
# single-token span with vector
|
|
assert_array_equal(ops.to_numpy(doc[10:11].vector), [-1, -1, -1])
|
|
doc.vocab.vectors = prev_vectors
|
|
|
|
|
|
# fmt: off
|
|
def test_span_comparison(doc):
|
|
|
|
# Identical start, end, only differ in label and kb_id
|
|
assert Span(doc, 0, 3) == Span(doc, 0, 3)
|
|
assert Span(doc, 0, 3, "LABEL") == Span(doc, 0, 3, "LABEL")
|
|
assert Span(doc, 0, 3, "LABEL", kb_id="KB_ID") == Span(doc, 0, 3, "LABEL", kb_id="KB_ID")
|
|
|
|
assert Span(doc, 0, 3) != Span(doc, 0, 3, "LABEL")
|
|
assert Span(doc, 0, 3) != Span(doc, 0, 3, "LABEL", kb_id="KB_ID")
|
|
assert Span(doc, 0, 3, "LABEL") != Span(doc, 0, 3, "LABEL", kb_id="KB_ID")
|
|
|
|
assert Span(doc, 0, 3) <= Span(doc, 0, 3) and Span(doc, 0, 3) >= Span(doc, 0, 3)
|
|
assert Span(doc, 0, 3, "LABEL") <= Span(doc, 0, 3, "LABEL") and Span(doc, 0, 3, "LABEL") >= Span(doc, 0, 3, "LABEL")
|
|
assert Span(doc, 0, 3, "LABEL", kb_id="KB_ID") <= Span(doc, 0, 3, "LABEL", kb_id="KB_ID")
|
|
assert Span(doc, 0, 3, "LABEL", kb_id="KB_ID") >= Span(doc, 0, 3, "LABEL", kb_id="KB_ID")
|
|
|
|
assert (Span(doc, 0, 3) < Span(doc, 0, 3, "", kb_id="KB_ID") < Span(doc, 0, 3, "LABEL") < Span(doc, 0, 3, "LABEL", kb_id="KB_ID"))
|
|
assert (Span(doc, 0, 3) <= Span(doc, 0, 3, "", kb_id="KB_ID") <= Span(doc, 0, 3, "LABEL") <= Span(doc, 0, 3, "LABEL", kb_id="KB_ID"))
|
|
|
|
assert (Span(doc, 0, 3, "LABEL", kb_id="KB_ID") > Span(doc, 0, 3, "LABEL") > Span(doc, 0, 3, "", kb_id="KB_ID") > Span(doc, 0, 3))
|
|
assert (Span(doc, 0, 3, "LABEL", kb_id="KB_ID") >= Span(doc, 0, 3, "LABEL") >= Span(doc, 0, 3, "", kb_id="KB_ID") >= Span(doc, 0, 3))
|
|
|
|
# Different end
|
|
assert Span(doc, 0, 3, "LABEL", kb_id="KB_ID") < Span(doc, 0, 4, "LABEL", kb_id="KB_ID")
|
|
|
|
assert Span(doc, 0, 3, "LABEL", kb_id="KB_ID") < Span(doc, 0, 4)
|
|
assert Span(doc, 0, 3, "LABEL", kb_id="KB_ID") <= Span(doc, 0, 4)
|
|
assert Span(doc, 0, 4) > Span(doc, 0, 3, "LABEL", kb_id="KB_ID")
|
|
assert Span(doc, 0, 4) >= Span(doc, 0, 3, "LABEL", kb_id="KB_ID")
|
|
|
|
# Different start
|
|
assert Span(doc, 0, 3, "LABEL", kb_id="KB_ID") != Span(doc, 1, 3, "LABEL", kb_id="KB_ID")
|
|
|
|
assert Span(doc, 0, 3, "LABEL", kb_id="KB_ID") < Span(doc, 1, 3)
|
|
assert Span(doc, 0, 3, "LABEL", kb_id="KB_ID") <= Span(doc, 1, 3)
|
|
assert Span(doc, 1, 3) > Span(doc, 0, 3, "LABEL", kb_id="KB_ID")
|
|
assert Span(doc, 1, 3) >= Span(doc, 0, 3, "LABEL", kb_id="KB_ID")
|
|
|
|
# Different start & different end
|
|
assert Span(doc, 0, 4, "LABEL", kb_id="KB_ID") != Span(doc, 1, 3, "LABEL", kb_id="KB_ID")
|
|
|
|
assert Span(doc, 0, 4, "LABEL", kb_id="KB_ID") < Span(doc, 1, 3)
|
|
assert Span(doc, 0, 4, "LABEL", kb_id="KB_ID") <= Span(doc, 1, 3)
|
|
assert Span(doc, 1, 3) > Span(doc, 0, 4, "LABEL", kb_id="KB_ID")
|
|
assert Span(doc, 1, 3) >= Span(doc, 0, 4, "LABEL", kb_id="KB_ID")
|
|
# fmt: on
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"start,end,expected_sentences,expected_sentences_with_hook",
|
|
[
|
|
(0, 14, 3, 7), # Entire doc
|
|
(3, 6, 2, 2), # Overlapping with 2 sentences
|
|
(0, 4, 1, 2), # Beginning of the Doc. Full sentence
|
|
(0, 3, 1, 2), # Beginning of the Doc. Part of a sentence
|
|
(9, 14, 2, 3), # End of the Doc. Overlapping with 2 senteces
|
|
(10, 14, 1, 2), # End of the Doc. Full sentence
|
|
(11, 14, 1, 2), # End of the Doc. Partial sentence
|
|
(0, 0, 1, 1), # Empty Span
|
|
],
|
|
)
|
|
def test_span_sents(doc, start, end, expected_sentences, expected_sentences_with_hook):
|
|
|
|
assert len(list(doc[start:end].sents)) == expected_sentences
|
|
|
|
def user_hook(doc):
|
|
return [doc[ii : ii + 2] for ii in range(0, len(doc), 2)]
|
|
|
|
doc.user_hooks["sents"] = user_hook
|
|
|
|
assert len(list(doc[start:end].sents)) == expected_sentences_with_hook
|
|
|
|
doc.user_span_hooks["sents"] = lambda x: [x]
|
|
|
|
assert list(doc[start:end].sents)[0] == doc[start:end]
|
|
assert len(list(doc[start:end].sents)) == 1
|
|
|
|
|
|
def test_span_sents_not_parsed(doc_not_parsed):
|
|
with pytest.raises(ValueError):
|
|
list(Span(doc_not_parsed, 0, 3).sents)
|
|
|
|
|
|
def test_span_group_copy(doc):
|
|
doc.spans["test"] = [doc[0:1], doc[2:4]]
|
|
assert len(doc.spans["test"]) == 2
|
|
doc_copy = doc.copy()
|
|
# check that the spans were indeed copied
|
|
assert len(doc_copy.spans["test"]) == 2
|
|
# add a new span to the original doc
|
|
doc.spans["test"].append(doc[3:4])
|
|
assert len(doc.spans["test"]) == 3
|
|
# check that the copy spans were not modified and this is an isolated doc
|
|
assert len(doc_copy.spans["test"]) == 2
|