mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 18:26:30 +03:00
d33953037e
* Create aryaprabhudesai.md (#2681) * Update _install.jade (#2688) Typo fix: "models" -> "model" * Add FAC to spacy.explain (resolves #2706) * Remove docstrings for deprecated arguments (see #2703) * When calling getoption() in conftest.py, pass a default option (#2709) * When calling getoption() in conftest.py, pass a default option This is necessary to allow testing an installed spacy by running: pytest --pyargs spacy * Add contributor agreement * update bengali token rules for hyphen and digits (#2731) * Less norm computations in token similarity (#2730) * Less norm computations in token similarity * Contributor agreement * Remove ')' for clarity (#2737) Sorry, don't mean to be nitpicky, I just noticed this when going through the CLI and thought it was a quick fix. That said, if this was intention than please let me know. * added contributor agreement for mbkupfer (#2738) * Basic support for Telugu language (#2751) * Lex _attrs for polish language (#2750) * Signed spaCy contributor agreement * Added polish version of english lex_attrs * Introduces a bulk merge function, in order to solve issue #653 (#2696) * Fix comment * Introduce bulk merge to increase performance on many span merges * Sign contributor agreement * Implement pull request suggestions * Describe converters more explicitly (see #2643) * Add multi-threading note to Language.pipe (resolves #2582) [ci skip] * Fix formatting * Fix dependency scheme docs (closes #2705) [ci skip] * Don't set stop word in example (closes #2657) [ci skip] * Add words to portuguese language _num_words (#2759) * Add words to portuguese language _num_words * Add words to portuguese language _num_words * Update Indonesian model (#2752) * adding e-KTP in tokenizer exceptions list * add exception token * removing lines with containing space as it won't matter since we use .split() method in the end, added new tokens in exception * add tokenizer exceptions list * combining base_norms with norm_exceptions * adding norm_exception * fix double key in lemmatizer * remove unused import on punctuation.py * reformat stop_words to reduce number of lines, improve readibility * updating tokenizer exception * implement is_currency for lang/id * adding orth_first_upper in tokenizer_exceptions * update the norm_exception list * remove bunch of abbreviations * adding contributors file * Fixed spaCy+Keras example (#2763) * bug fixes in keras example * created contributor agreement * Adding French hyphenated first name (#2786) * Fix typo (closes #2784) * Fix typo (#2795) [ci skip] Fixed typo on line 6 "regcognizer --> recognizer" * Adding basic support for Sinhala language. (#2788) * adding Sinhala language package, stop words, examples and lex_attrs. * Adding contributor agreement * Updating contributor agreement * Also include lowercase norm exceptions * Fix error (#2802) * Fix error ValueError: cannot resize an array that references or is referenced by another array in this way. Use the resize function * added spaCy Contributor Agreement * Add charlax's contributor agreement (#2805) * agreement of contributor, may I introduce a tiny pl languge contribution (#2799) * Contributors agreement * Contributors agreement * Contributors agreement * Add jupyter=True to displacy.render in documentation (#2806) * Revert "Also include lowercase norm exceptions" This reverts commit70f4e8adf3
. * Remove deprecated encoding argument to msgpack * Set up dependency tree pattern matching skeleton (#2732) * Fix bug when too many entity types. Fixes #2800 * Fix Python 2 test failure * Require older msgpack-numpy * Restore encoding arg on msgpack-numpy * Try to fix version pin for msgpack-numpy * Update Portuguese Language (#2790) * Add words to portuguese language _num_words * Add words to portuguese language _num_words * Portuguese - Add/remove stopwords, fix tokenizer, add currency symbols * Extended punctuation and norm_exceptions in the Portuguese language * Correct error in spacy universe docs concerning spacy-lookup (#2814) * Update Keras Example for (Parikh et al, 2016) implementation (#2803) * bug fixes in keras example * created contributor agreement * baseline for Parikh model * initial version of parikh 2016 implemented * tested asymmetric models * fixed grevious error in normalization * use standard SNLI test file * begin to rework parikh example * initial version of running example * start to document the new version * start to document the new version * Update Decompositional Attention.ipynb * fixed calls to similarity * updated the README * import sys package duh * simplified indexing on mapping word to IDs * stupid python indent error * added code from https://github.com/tensorflow/tensorflow/issues/3388 for tf bug workaround * Fix typo (closes #2815) [ci skip] * Update regex version dependency * Set version to 2.0.13.dev3 * Skip seemingly problematic test * Remove problematic test * Try previous version of regex * Revert "Remove problematic test" This reverts commitbdebbef455
. * Unskip test * Try older version of regex * 💫 Update training examples and use minibatching (#2830) <!--- Provide a general summary of your changes in the title. --> ## Description Update the training examples in `/examples/training` to show usage of spaCy's `minibatch` and `compounding` helpers ([see here](https://spacy.io/usage/training#tips-batch-size) for details). The lack of batching in the examples has caused some confusion in the past, especially for beginners who would copy-paste the examples, update them with large training sets and experienced slow and unsatisfying results. ### Types of change enhancements ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Visual C++ link updated (#2842) (closes #2841) [ci skip] * New landing page * Add contribution agreement * Correcting lang/ru/examples.py (#2845) * Correct some grammatical inaccuracies in lang\ru\examples.py; filled Contributor Agreement * Correct some grammatical inaccuracies in lang\ru\examples.py * Move contributor agreement to separate file * Set version to 2.0.13.dev4 * Add Persian(Farsi) language support (#2797) * Also include lowercase norm exceptions * Remove in favour of https://github.com/explosion/spaCy/graphs/contributors * Rule-based French Lemmatizer (#2818) <!--- Provide a general summary of your changes in the title. --> ## Description <!--- Use this section to describe your changes. If your changes required testing, include information about the testing environment and the tests you ran. If your test fixes a bug reported in an issue, don't forget to include the issue number. If your PR is still a work in progress, that's totally fine – just include a note to let us know. --> Add a rule-based French Lemmatizer following the english one and the excellent PR for [greek language optimizations](https://github.com/explosion/spaCy/pull/2558) to adapt the Lemmatizer class. ### Types of change <!-- What type of change does your PR cover? Is it a bug fix, an enhancement or new feature, or a change to the documentation? --> - Lemma dictionary used can be found [here](http://infolingu.univ-mlv.fr/DonneesLinguistiques/Dictionnaires/telechargement.html), I used the XML version. - Add several files containing exhaustive list of words for each part of speech - Add some lemma rules - Add POS that are not checked in the standard Lemmatizer, i.e PRON, DET, ADV and AUX - Modify the Lemmatizer class to check in lookup table as a last resort if POS not mentionned - Modify the lemmatize function to check in lookup table as a last resort - Init files are updated so the model can support all the functionalities mentioned above - Add words to tokenizer_exceptions_list.py in respect to regex used in tokenizer_exceptions.py ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [X] I have submitted the spaCy Contributor Agreement. - [X] I ran the tests, and all new and existing tests passed. - [X] My changes don't require a change to the documentation, or if they do, I've added all required information. * Set version to 2.0.13 * Fix formatting and consistency * Update docs for new version [ci skip] * Increment version [ci skip] * Add info on wheels [ci skip] * Adding "This is a sentence" example to Sinhala (#2846) * Add wheels badge * Update badge [ci skip] * Update README.rst [ci skip] * Update murmurhash pin * Increment version to 2.0.14.dev0 * Update GPU docs for v2.0.14 * Add wheel to setup_requires * Import prefer_gpu and require_gpu functions from Thinc * Add tests for prefer_gpu() and require_gpu() * Update requirements and setup.py * Workaround bug in thinc require_gpu * Set version to v2.0.14 * Update push-tag script * Unhack prefer_gpu * Require thinc 6.10.6 * Update prefer_gpu and require_gpu docs [ci skip] * Fix specifiers for GPU * Set version to 2.0.14.dev1 * Set version to 2.0.14 * Update Thinc version pin * Increment version * Fix msgpack-numpy version pin * Increment version * Update version to 2.0.16 * Update version [ci skip] * Redundant ')' in the Stop words' example (#2856) <!--- Provide a general summary of your changes in the title. --> ## Description <!--- Use this section to describe your changes. If your changes required testing, include information about the testing environment and the tests you ran. If your test fixes a bug reported in an issue, don't forget to include the issue number. If your PR is still a work in progress, that's totally fine – just include a note to let us know. --> ### Types of change <!-- What type of change does your PR cover? Is it a bug fix, an enhancement or new feature, or a change to the documentation? --> ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [ ] I have submitted the spaCy Contributor Agreement. - [ ] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information. * Documentation improvement regarding joblib and SO (#2867) Some documentation improvements ## Description 1. Fixed the dead URL to joblib 2. Fixed Stack Overflow brand name (with space) ### Types of change Documentation ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * raise error when setting overlapping entities as doc.ents (#2880) * Fix out-of-bounds access in NER training The helper method state.B(1) gets the index of the first token of the buffer, or -1 if no such token exists. Normally this is safe because we pass this to functions like state.safe_get(), which returns an empty token. Here we used it directly as an array index, which is not okay! This error may have been the cause of out-of-bounds access errors during training. Similar errors may still be around, so much be hunted down. Hunting this one down took a long time...I printed out values across training runs and diffed, looking for points of divergence between runs, when no randomness should be allowed. * Change PyThaiNLP Url (#2876) * Fix missing comma * Add example showing a fix-up rule for space entities * Set version to 2.0.17.dev0 * Update regex version * Revert "Update regex version" This reverts commit62358dd867
. * Try setting older regex version, to align with conda * Set version to 2.0.17 * Add spacy-js to universe [ci-skip] * Add spacy-raspberry to universe (closes #2889) * Add script to validate universe json [ci skip] * Removed space in docs + added contributor indo (#2909) * - removed unneeded space in documentation * - added contributor info * Allow input text of length up to max_length, inclusive (#2922) * Include universe spec for spacy-wordnet component (#2919) * feat: include universe spec for spacy-wordnet component * chore: include spaCy contributor agreement * Minor formatting changes [ci skip] * Fix image [ci skip] Twitter URL doesn't work on live site * Check if the word is in one of the regular lists specific to each POS (#2886) * 💫 Create random IDs for SVGs to prevent ID clashes (#2927) Resolves #2924. ## Description Fixes problem where multiple visualizations in Jupyter notebooks would have clashing arc IDs, resulting in weirdly positioned arc labels. Generating a random ID prefix so even identical parses won't receive the same IDs for consistency (even if effect of ID clash isn't noticable here.) ### Types of change bug fix ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Fix typo [ci skip] * fixes symbolic link on py3 and windows (#2949) * fixes symbolic link on py3 and windows during setup of spacy using command python -m spacy link en_core_web_sm en closes #2948 * Update spacy/compat.py Co-Authored-By: cicorias <cicorias@users.noreply.github.com> * Fix formatting * Update universe [ci skip] * Catalan Language Support (#2940) * Catalan language Support * Ddding Catalan to documentation * Sort languages alphabetically [ci skip] * Update tests for pytest 4.x (#2965) <!--- Provide a general summary of your changes in the title. --> ## Description - [x] Replace marks in params for pytest 4.0 compat ([see here](https://docs.pytest.org/en/latest/deprecations.html#marks-in-pytest-mark-parametrize)) - [x] Un-xfail passing tests (some fixes in a recent update resolved a bunch of issues, but tests were apparently never updated here) ### Types of change <!-- What type of change does your PR cover? Is it a bug fix, an enhancement or new feature, or a change to the documentation? --> ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Fix regex pin to harmonize with conda (#2964) * Update README.rst * Fix bug where Vocab.prune_vector did not use 'batch_size' (#2977) Fixes #2976 * Fix typo * Fix typo * Remove duplicate file * Require thinc 7.0.0.dev2 Fixes bug in gpu_ops that would use cupy instead of numpy on CPU * Add missing import * Fix error IDs * Fix tests
887 lines
30 KiB
Cython
887 lines
30 KiB
Cython
# cython: infer_types=True
|
||
# coding: utf8
|
||
from __future__ import unicode_literals
|
||
|
||
from libc.string cimport memcpy
|
||
from cpython.mem cimport PyMem_Malloc, PyMem_Free
|
||
# Compiler crashes on memory view coercion without this. Should report bug.
|
||
from cython.view cimport array as cvarray
|
||
cimport numpy as np
|
||
np.import_array()
|
||
import numpy
|
||
|
||
from ..typedefs cimport hash_t
|
||
from ..lexeme cimport Lexeme
|
||
from .. import parts_of_speech
|
||
from ..attrs cimport IS_ALPHA, IS_ASCII, IS_DIGIT, IS_LOWER, IS_PUNCT, IS_SPACE
|
||
from ..attrs cimport IS_BRACKET, IS_QUOTE, IS_LEFT_PUNCT, IS_RIGHT_PUNCT
|
||
from ..attrs cimport IS_OOV, IS_TITLE, IS_UPPER, IS_CURRENCY, LIKE_URL, LIKE_NUM, LIKE_EMAIL
|
||
from ..attrs cimport IS_STOP, ID, ORTH, NORM, LOWER, SHAPE, PREFIX, SUFFIX
|
||
from ..attrs cimport LENGTH, CLUSTER, LEMMA, POS, TAG, DEP
|
||
from ..compat import is_config
|
||
from ..errors import Errors, Warnings, user_warning, models_warning
|
||
from .. import util
|
||
from .underscore import Underscore, get_ext_args
|
||
|
||
|
||
cdef class Token:
|
||
"""An individual token – i.e. a word, punctuation symbol, whitespace,
|
||
etc."""
|
||
@classmethod
|
||
def set_extension(cls, name, **kwargs):
|
||
if cls.has_extension(name) and not kwargs.get('force', False):
|
||
raise ValueError(Errors.E090.format(name=name, obj='Token'))
|
||
Underscore.token_extensions[name] = get_ext_args(**kwargs)
|
||
|
||
@classmethod
|
||
def get_extension(cls, name):
|
||
return Underscore.token_extensions.get(name)
|
||
|
||
@classmethod
|
||
def has_extension(cls, name):
|
||
return name in Underscore.token_extensions
|
||
|
||
@classmethod
|
||
def remove_extension(cls, name):
|
||
if not cls.has_extension(name):
|
||
raise ValueError(Errors.E046.format(name=name))
|
||
return Underscore.token_extensions.pop(name)
|
||
|
||
def __cinit__(self, Vocab vocab, Doc doc, int offset):
|
||
"""Construct a `Token` object.
|
||
|
||
vocab (Vocab): A storage container for lexical types.
|
||
doc (Doc): The parent document.
|
||
offset (int): The index of the token within the document.
|
||
"""
|
||
self.vocab = vocab
|
||
self.doc = doc
|
||
self.c = &self.doc.c[offset]
|
||
self.i = offset
|
||
|
||
def __hash__(self):
|
||
return hash((self.doc, self.i))
|
||
|
||
def __len__(self):
|
||
"""The number of unicode characters in the token, i.e. `token.text`.
|
||
|
||
RETURNS (int): The number of unicode characters in the token.
|
||
"""
|
||
return self.c.lex.length
|
||
|
||
def __unicode__(self):
|
||
return self.text
|
||
|
||
def __bytes__(self):
|
||
return self.text.encode('utf8')
|
||
|
||
def __str__(self):
|
||
if is_config(python3=True):
|
||
return self.__unicode__()
|
||
return self.__bytes__()
|
||
|
||
def __repr__(self):
|
||
return self.__str__()
|
||
|
||
def __richcmp__(self, Token other, int op):
|
||
# http://cython.readthedocs.io/en/latest/src/userguide/special_methods.html
|
||
if other is None:
|
||
if op in (0, 1, 2):
|
||
return False
|
||
else:
|
||
return True
|
||
cdef Doc my_doc = self.doc
|
||
cdef Doc other_doc = other.doc
|
||
my = self.idx
|
||
their = other.idx
|
||
if op == 0:
|
||
return my < their
|
||
elif op == 2:
|
||
if my_doc is other_doc:
|
||
return my == their
|
||
else:
|
||
return False
|
||
elif op == 4:
|
||
return my > their
|
||
elif op == 1:
|
||
return my <= their
|
||
elif op == 3:
|
||
if my_doc is other_doc:
|
||
return my != their
|
||
else:
|
||
return True
|
||
elif op == 5:
|
||
return my >= their
|
||
else:
|
||
raise ValueError(Errors.E041.format(op=op))
|
||
|
||
@property
|
||
def _(self):
|
||
return Underscore(Underscore.token_extensions, self,
|
||
start=self.idx, end=None)
|
||
|
||
cpdef bint check_flag(self, attr_id_t flag_id) except -1:
|
||
"""Check the value of a boolean flag.
|
||
|
||
flag_id (int): The ID of the flag attribute.
|
||
RETURNS (bool): Whether the flag is set.
|
||
|
||
EXAMPLE:
|
||
>>> from spacy.attrs import IS_TITLE
|
||
>>> doc = nlp(u'Give it back! He pleaded.')
|
||
>>> token = doc[0]
|
||
>>> token.check_flag(IS_TITLE)
|
||
True
|
||
"""
|
||
return Lexeme.c_check_flag(self.c.lex, flag_id)
|
||
|
||
def nbor(self, int i=1):
|
||
"""Get a neighboring token.
|
||
|
||
i (int): The relative position of the token to get. Defaults to 1.
|
||
RETURNS (Token): The token at position `self.doc[self.i+i]`.
|
||
"""
|
||
if self.i+i < 0 or (self.i+i >= len(self.doc)):
|
||
raise IndexError(Errors.E042.format(i=self.i, j=i, length=len(self.doc)))
|
||
return self.doc[self.i+i]
|
||
|
||
def similarity(self, other):
|
||
"""Make a semantic similarity estimate. The default estimate is cosine
|
||
similarity using an average of word vectors.
|
||
|
||
other (object): The object to compare with. By default, accepts `Doc`,
|
||
`Span`, `Token` and `Lexeme` objects.
|
||
RETURNS (float): A scalar similarity score. Higher is more similar.
|
||
"""
|
||
if 'similarity' in self.doc.user_token_hooks:
|
||
return self.doc.user_token_hooks['similarity'](self)
|
||
if hasattr(other, '__len__') and len(other) == 1 and hasattr(other, "__getitem__"):
|
||
if self.c.lex.orth == getattr(other[0], 'orth', None):
|
||
return 1.0
|
||
elif hasattr(other, 'orth'):
|
||
if self.c.lex.orth == other.orth:
|
||
return 1.0
|
||
if self.vocab.vectors.n_keys == 0:
|
||
models_warning(Warnings.W007.format(obj='Token'))
|
||
if self.vector_norm == 0 or other.vector_norm == 0:
|
||
user_warning(Warnings.W008.format(obj='Token'))
|
||
return 0.0
|
||
return (numpy.dot(self.vector, other.vector) /
|
||
(self.vector_norm * other.vector_norm))
|
||
|
||
property lex_id:
|
||
"""RETURNS (int): Sequential ID of the token's lexical type."""
|
||
def __get__(self):
|
||
return self.c.lex.id
|
||
|
||
property rank:
|
||
"""RETURNS (int): Sequential ID of the token's lexical type, used to
|
||
index into tables, e.g. for word vectors."""
|
||
def __get__(self):
|
||
return self.c.lex.id
|
||
|
||
property string:
|
||
"""Deprecated: Use Token.text_with_ws instead."""
|
||
def __get__(self):
|
||
return self.text_with_ws
|
||
|
||
property text:
|
||
"""RETURNS (unicode): The original verbatim text of the token."""
|
||
def __get__(self):
|
||
return self.orth_
|
||
|
||
property text_with_ws:
|
||
"""RETURNS (unicode): The text content of the span (with trailing
|
||
whitespace).
|
||
"""
|
||
def __get__(self):
|
||
cdef unicode orth = self.vocab.strings[self.c.lex.orth]
|
||
if self.c.spacy:
|
||
return orth + u' '
|
||
else:
|
||
return orth
|
||
|
||
property prob:
|
||
"""RETURNS (float): Smoothed log probability estimate of token type."""
|
||
def __get__(self):
|
||
return self.c.lex.prob
|
||
|
||
property sentiment:
|
||
"""RETURNS (float): A scalar value indicating the positivity or
|
||
negativity of the token."""
|
||
def __get__(self):
|
||
if 'sentiment' in self.doc.user_token_hooks:
|
||
return self.doc.user_token_hooks['sentiment'](self)
|
||
return self.c.lex.sentiment
|
||
|
||
property lang:
|
||
"""RETURNS (uint64): ID of the language of the parent document's
|
||
vocabulary.
|
||
"""
|
||
def __get__(self):
|
||
return self.c.lex.lang
|
||
|
||
property idx:
|
||
"""RETURNS (int): The character offset of the token within the parent
|
||
document.
|
||
"""
|
||
def __get__(self):
|
||
return self.c.idx
|
||
|
||
property cluster:
|
||
"""RETURNS (int): Brown cluster ID."""
|
||
def __get__(self):
|
||
return self.c.lex.cluster
|
||
|
||
property orth:
|
||
"""RETURNS (uint64): ID of the verbatim text content."""
|
||
def __get__(self):
|
||
return self.c.lex.orth
|
||
|
||
property lower:
|
||
"""RETURNS (uint64): ID of the lowercase token text."""
|
||
def __get__(self):
|
||
return self.c.lex.lower
|
||
|
||
property norm:
|
||
"""RETURNS (uint64): ID of the token's norm, i.e. a normalised form of
|
||
the token text. Usually set in the language's tokenizer exceptions
|
||
or norm exceptions.
|
||
"""
|
||
def __get__(self):
|
||
return self.c.lex.norm
|
||
|
||
property shape:
|
||
"""RETURNS (uint64): ID of the token's shape, a transform of the
|
||
tokens's string, to show orthographic features (e.g. "Xxxx", "dd").
|
||
"""
|
||
def __get__(self):
|
||
return self.c.lex.shape
|
||
|
||
property prefix:
|
||
"""RETURNS (uint64): ID of a length-N substring from the start of the
|
||
token. Defaults to `N=1`.
|
||
"""
|
||
def __get__(self):
|
||
return self.c.lex.prefix
|
||
|
||
property suffix:
|
||
"""RETURNS (uint64): ID of a length-N substring from the end of the
|
||
token. Defaults to `N=3`.
|
||
"""
|
||
def __get__(self):
|
||
return self.c.lex.suffix
|
||
|
||
property lemma:
|
||
"""RETURNS (uint64): ID of the base form of the word, with no
|
||
inflectional suffixes.
|
||
"""
|
||
def __get__(self):
|
||
if self.c.lemma == 0:
|
||
lemma_ = self.vocab.morphology.lemmatizer.lookup(self.orth_)
|
||
return self.vocab.strings[lemma_]
|
||
else:
|
||
return self.c.lemma
|
||
|
||
def __set__(self, attr_t lemma):
|
||
self.c.lemma = lemma
|
||
|
||
property pos:
|
||
"""RETURNS (uint64): ID of coarse-grained part-of-speech tag."""
|
||
def __get__(self):
|
||
return self.c.pos
|
||
def __set__(self, pos):
|
||
self.c.pos = pos
|
||
|
||
property tag:
|
||
"""RETURNS (uint64): ID of fine-grained part-of-speech tag."""
|
||
def __get__(self):
|
||
return self.c.tag
|
||
|
||
def __set__(self, attr_t tag):
|
||
self.vocab.morphology.assign_tag(self.c, tag)
|
||
|
||
property dep:
|
||
"""RETURNS (uint64): ID of syntactic dependency label."""
|
||
def __get__(self):
|
||
return self.c.dep
|
||
|
||
def __set__(self, attr_t label):
|
||
self.c.dep = label
|
||
|
||
property has_vector:
|
||
"""A boolean value indicating whether a word vector is associated with
|
||
the object.
|
||
|
||
RETURNS (bool): Whether a word vector is associated with the object.
|
||
"""
|
||
def __get__(self):
|
||
if 'has_vector' in self.doc.user_token_hooks:
|
||
return self.doc.user_token_hooks['has_vector'](self)
|
||
if self.vocab.vectors.size == 0 and self.doc.tensor.size != 0:
|
||
return True
|
||
return self.vocab.has_vector(self.c.lex.orth)
|
||
|
||
property vector:
|
||
"""A real-valued meaning representation.
|
||
|
||
RETURNS (numpy.ndarray[ndim=1, dtype='float32']): A 1D numpy array
|
||
representing the token's semantics.
|
||
"""
|
||
def __get__(self):
|
||
if 'vector' in self.doc.user_token_hooks:
|
||
return self.doc.user_token_hooks['vector'](self)
|
||
if self.vocab.vectors.size == 0 and self.doc.tensor.size != 0:
|
||
return self.doc.tensor[self.i]
|
||
else:
|
||
return self.vocab.get_vector(self.c.lex.orth)
|
||
|
||
property vector_norm:
|
||
"""The L2 norm of the token's vector representation.
|
||
|
||
RETURNS (float): The L2 norm of the vector representation.
|
||
"""
|
||
def __get__(self):
|
||
if 'vector_norm' in self.doc.user_token_hooks:
|
||
return self.doc.user_token_hooks['vector_norm'](self)
|
||
vector = self.vector
|
||
return numpy.sqrt((vector ** 2).sum())
|
||
|
||
property n_lefts:
|
||
"""RETURNS (int): The number of leftward immediate children of the
|
||
word, in the syntactic dependency parse.
|
||
"""
|
||
def __get__(self):
|
||
return self.c.l_kids
|
||
|
||
property n_rights:
|
||
"""RETURNS (int): The number of rightward immediate children of the
|
||
word, in the syntactic dependency parse.
|
||
"""
|
||
def __get__(self):
|
||
return self.c.r_kids
|
||
|
||
property sent:
|
||
"""RETURNS (Span): The sentence span that the token is a part of."""
|
||
def __get__(self):
|
||
if 'sent' in self.doc.user_token_hooks:
|
||
return self.doc.user_token_hooks['sent'](self)
|
||
return self.doc[self.i : self.i+1].sent
|
||
|
||
property sent_start:
|
||
def __get__(self):
|
||
# Raising a deprecation warning here causes errors for autocomplete
|
||
# Handle broken backwards compatibility case: doc[0].sent_start
|
||
# was False.
|
||
if self.i == 0:
|
||
return False
|
||
else:
|
||
return self.c.sent_start
|
||
|
||
def __set__(self, value):
|
||
self.is_sent_start = value
|
||
|
||
property is_sent_start:
|
||
"""RETURNS (bool / None): Whether the token starts a sentence.
|
||
None if unknown.
|
||
"""
|
||
def __get__(self):
|
||
if self.c.sent_start == 0:
|
||
return None
|
||
elif self.c.sent_start < 0:
|
||
return False
|
||
else:
|
||
return True
|
||
|
||
def __set__(self, value):
|
||
if self.doc.is_parsed:
|
||
raise ValueError(Errors.E043)
|
||
if value is None:
|
||
self.c.sent_start = 0
|
||
elif value is True:
|
||
self.c.sent_start = 1
|
||
elif value is False:
|
||
self.c.sent_start = -1
|
||
else:
|
||
raise ValueError(Errors.E044.format(value=value))
|
||
|
||
property lefts:
|
||
"""The leftward immediate children of the word, in the syntactic
|
||
dependency parse.
|
||
|
||
YIELDS (Token): A left-child of the token.
|
||
"""
|
||
def __get__(self):
|
||
cdef int nr_iter = 0
|
||
cdef const TokenC* ptr = self.c - (self.i - self.c.l_edge)
|
||
while ptr < self.c:
|
||
if ptr + ptr.head == self.c:
|
||
yield self.doc[ptr - (self.c - self.i)]
|
||
ptr += 1
|
||
nr_iter += 1
|
||
# This is ugly, but it's a way to guard out infinite loops
|
||
if nr_iter >= 10000000:
|
||
raise RuntimeError(Errors.E045.format(attr='token.lefts'))
|
||
|
||
property rights:
|
||
"""The rightward immediate children of the word, in the syntactic
|
||
dependency parse.
|
||
|
||
YIELDS (Token): A right-child of the token.
|
||
"""
|
||
def __get__(self):
|
||
cdef const TokenC* ptr = self.c + (self.c.r_edge - self.i)
|
||
tokens = []
|
||
cdef int nr_iter = 0
|
||
while ptr > self.c:
|
||
if ptr + ptr.head == self.c:
|
||
tokens.append(self.doc[ptr - (self.c - self.i)])
|
||
ptr -= 1
|
||
nr_iter += 1
|
||
if nr_iter >= 10000000:
|
||
raise RuntimeError(Errors.E045.format(attr='token.rights'))
|
||
tokens.reverse()
|
||
for t in tokens:
|
||
yield t
|
||
|
||
property children:
|
||
"""A sequence of the token's immediate syntactic children.
|
||
|
||
YIELDS (Token): A child token such that child.head==self
|
||
"""
|
||
def __get__(self):
|
||
yield from self.lefts
|
||
yield from self.rights
|
||
|
||
property subtree:
|
||
"""A sequence of all the token's syntactic descendents.
|
||
|
||
YIELDS (Token): A descendent token such that
|
||
`self.is_ancestor(descendent)`.
|
||
"""
|
||
def __get__(self):
|
||
for word in self.lefts:
|
||
yield from word.subtree
|
||
yield self
|
||
for word in self.rights:
|
||
yield from word.subtree
|
||
|
||
property left_edge:
|
||
"""The leftmost token of this token's syntactic descendents.
|
||
|
||
RETURNS (Token): The first token such that `self.is_ancestor(token)`.
|
||
"""
|
||
def __get__(self):
|
||
return self.doc[self.c.l_edge]
|
||
|
||
property right_edge:
|
||
"""The rightmost token of this token's syntactic descendents.
|
||
|
||
RETURNS (Token): The last token such that `self.is_ancestor(token)`.
|
||
"""
|
||
def __get__(self):
|
||
return self.doc[self.c.r_edge]
|
||
|
||
property ancestors:
|
||
"""A sequence of this token's syntactic ancestors.
|
||
|
||
YIELDS (Token): A sequence of ancestor tokens such that
|
||
`ancestor.is_ancestor(self)`.
|
||
"""
|
||
def __get__(self):
|
||
cdef const TokenC* head_ptr = self.c
|
||
# guard against infinite loop, no token can have
|
||
# more ancestors than tokens in the tree
|
||
cdef int i = 0
|
||
while head_ptr.head != 0 and i < self.doc.length:
|
||
head_ptr += head_ptr.head
|
||
yield self.doc[head_ptr - (self.c - self.i)]
|
||
i += 1
|
||
|
||
def is_ancestor(self, descendant):
|
||
"""Check whether this token is a parent, grandparent, etc. of another
|
||
in the dependency tree.
|
||
|
||
descendant (Token): Another token.
|
||
RETURNS (bool): Whether this token is the ancestor of the descendant.
|
||
"""
|
||
if self.doc is not descendant.doc:
|
||
return False
|
||
return any(ancestor.i == self.i for ancestor in descendant.ancestors)
|
||
|
||
property head:
|
||
"""The syntactic parent, or "governor", of this token.
|
||
|
||
RETURNS (Token): The token predicted by the parser to be the head of
|
||
the current token.
|
||
"""
|
||
def __get__(self):
|
||
return self.doc[self.i + self.c.head]
|
||
|
||
def __set__(self, Token new_head):
|
||
# this function sets the head of self to new_head
|
||
# and updates the counters for left/right dependents
|
||
# and left/right corner for the new and the old head
|
||
|
||
# do nothing if old head is new head
|
||
if self.i + self.c.head == new_head.i:
|
||
return
|
||
|
||
cdef Token old_head = self.head
|
||
cdef int rel_newhead_i = new_head.i - self.i
|
||
|
||
# is the new head a descendant of the old head
|
||
cdef bint is_desc = old_head.is_ancestor(new_head)
|
||
|
||
cdef int new_edge
|
||
cdef Token anc, child
|
||
|
||
# update number of deps of old head
|
||
if self.c.head > 0: # left dependent
|
||
old_head.c.l_kids -= 1
|
||
if self.c.l_edge == old_head.c.l_edge:
|
||
# the token dominates the left edge so the left edge of
|
||
# the head may change when the token is reattached, it may
|
||
# not change if the new head is a descendant of the current
|
||
# head
|
||
|
||
new_edge = self.c.l_edge
|
||
# the new l_edge is the left-most l_edge on any of the
|
||
# other dependents where the l_edge is left of the head,
|
||
# otherwise it is the head
|
||
if not is_desc:
|
||
new_edge = old_head.i
|
||
for child in old_head.children:
|
||
if child == self:
|
||
continue
|
||
if child.c.l_edge < new_edge:
|
||
new_edge = child.c.l_edge
|
||
old_head.c.l_edge = new_edge
|
||
|
||
# walk up the tree from old_head and assign new l_edge to
|
||
# ancestors until an ancestor already has an l_edge that's
|
||
# further left
|
||
for anc in old_head.ancestors:
|
||
if anc.c.l_edge <= new_edge:
|
||
break
|
||
anc.c.l_edge = new_edge
|
||
|
||
elif self.c.head < 0: # right dependent
|
||
old_head.c.r_kids -= 1
|
||
# do the same thing as for l_edge
|
||
if self.c.r_edge == old_head.c.r_edge:
|
||
new_edge = self.c.r_edge
|
||
|
||
if not is_desc:
|
||
new_edge = old_head.i
|
||
for child in old_head.children:
|
||
if child == self:
|
||
continue
|
||
if child.c.r_edge > new_edge:
|
||
new_edge = child.c.r_edge
|
||
old_head.c.r_edge = new_edge
|
||
|
||
for anc in old_head.ancestors:
|
||
if anc.c.r_edge >= new_edge:
|
||
break
|
||
anc.c.r_edge = new_edge
|
||
|
||
# update number of deps of new head
|
||
if rel_newhead_i > 0: # left dependent
|
||
new_head.c.l_kids += 1
|
||
# walk up the tree from new head and set l_edge to self.l_edge
|
||
# until you hit a token with an l_edge further to the left
|
||
if self.c.l_edge < new_head.c.l_edge:
|
||
new_head.c.l_edge = self.c.l_edge
|
||
for anc in new_head.ancestors:
|
||
if anc.c.l_edge <= self.c.l_edge:
|
||
break
|
||
anc.c.l_edge = self.c.l_edge
|
||
|
||
elif rel_newhead_i < 0: # right dependent
|
||
new_head.c.r_kids += 1
|
||
# do the same as for l_edge
|
||
if self.c.r_edge > new_head.c.r_edge:
|
||
new_head.c.r_edge = self.c.r_edge
|
||
for anc in new_head.ancestors:
|
||
if anc.c.r_edge >= self.c.r_edge:
|
||
break
|
||
anc.c.r_edge = self.c.r_edge
|
||
|
||
# set new head
|
||
self.c.head = rel_newhead_i
|
||
|
||
property conjuncts:
|
||
"""A sequence of coordinated tokens, including the token itself.
|
||
|
||
YIELDS (Token): A coordinated token.
|
||
"""
|
||
def __get__(self):
|
||
"""Get a list of conjoined words."""
|
||
cdef Token word
|
||
if 'conjuncts' in self.doc.user_token_hooks:
|
||
yield from self.doc.user_token_hooks['conjuncts'](self)
|
||
else:
|
||
if self.dep_ != 'conj':
|
||
for word in self.rights:
|
||
if word.dep_ == 'conj':
|
||
yield word
|
||
yield from word.conjuncts
|
||
|
||
property ent_type:
|
||
"""RETURNS (uint64): Named entity type."""
|
||
def __get__(self):
|
||
return self.c.ent_type
|
||
|
||
def __set__(self, ent_type):
|
||
self.c.ent_type = ent_type
|
||
|
||
property ent_iob:
|
||
"""IOB code of named entity tag. `1="I", 2="O", 3="B"`. 0 means no tag
|
||
is assigned.
|
||
|
||
RETURNS (uint64): IOB code of named entity tag.
|
||
"""
|
||
def __get__(self):
|
||
return self.c.ent_iob
|
||
|
||
property ent_type_:
|
||
"""RETURNS (unicode): Named entity type."""
|
||
def __get__(self):
|
||
return self.vocab.strings[self.c.ent_type]
|
||
|
||
def __set__(self, ent_type):
|
||
self.c.ent_type = self.vocab.strings.add(ent_type)
|
||
|
||
property ent_iob_:
|
||
"""IOB code of named entity tag. "B" means the token begins an entity,
|
||
"I" means it is inside an entity, "O" means it is outside an entity,
|
||
and "" means no entity tag is set.
|
||
|
||
RETURNS (unicode): IOB code of named entity tag.
|
||
"""
|
||
def __get__(self):
|
||
iob_strings = ('', 'I', 'O', 'B')
|
||
return iob_strings[self.c.ent_iob]
|
||
|
||
property ent_id:
|
||
"""RETURNS (uint64): ID of the entity the token is an instance of,
|
||
if any.
|
||
"""
|
||
def __get__(self):
|
||
return self.c.ent_id
|
||
|
||
def __set__(self, hash_t key):
|
||
self.c.ent_id = key
|
||
|
||
property ent_id_:
|
||
"""RETURNS (unicode): ID of the entity the token is an instance of,
|
||
if any.
|
||
"""
|
||
def __get__(self):
|
||
return self.vocab.strings[self.c.ent_id]
|
||
|
||
def __set__(self, name):
|
||
self.c.ent_id = self.vocab.strings.add(name)
|
||
|
||
property whitespace_:
|
||
"""RETURNS (unicode): The trailing whitespace character, if present.
|
||
"""
|
||
def __get__(self):
|
||
return ' ' if self.c.spacy else ''
|
||
|
||
property orth_:
|
||
"""RETURNS (unicode): Verbatim text content (identical to
|
||
`Token.text`). Exists mostly for consistency with the other
|
||
attributes.
|
||
"""
|
||
def __get__(self):
|
||
return self.vocab.strings[self.c.lex.orth]
|
||
|
||
property lower_:
|
||
"""RETURNS (unicode): The lowercase token text. Equivalent to
|
||
`Token.text.lower()`.
|
||
"""
|
||
def __get__(self):
|
||
return self.vocab.strings[self.c.lex.lower]
|
||
|
||
property norm_:
|
||
"""RETURNS (unicode): The token's norm, i.e. a normalised form of the
|
||
token text. Usually set in the language's tokenizer exceptions or
|
||
norm exceptions.
|
||
"""
|
||
def __get__(self):
|
||
return self.vocab.strings[self.c.lex.norm]
|
||
|
||
property shape_:
|
||
"""RETURNS (unicode): Transform of the tokens's string, to show
|
||
orthographic features. For example, "Xxxx" or "dd".
|
||
"""
|
||
def __get__(self):
|
||
return self.vocab.strings[self.c.lex.shape]
|
||
|
||
property prefix_:
|
||
"""RETURNS (unicode): A length-N substring from the start of the token.
|
||
Defaults to `N=1`.
|
||
"""
|
||
def __get__(self):
|
||
return self.vocab.strings[self.c.lex.prefix]
|
||
|
||
property suffix_:
|
||
"""RETURNS (unicode): A length-N substring from the end of the token.
|
||
Defaults to `N=3`.
|
||
"""
|
||
def __get__(self):
|
||
return self.vocab.strings[self.c.lex.suffix]
|
||
|
||
property lang_:
|
||
"""RETURNS (unicode): Language of the parent document's vocabulary,
|
||
e.g. 'en'.
|
||
"""
|
||
def __get__(self):
|
||
return self.vocab.strings[self.c.lex.lang]
|
||
|
||
property lemma_:
|
||
"""RETURNS (unicode): The token lemma, i.e. the base form of the word,
|
||
with no inflectional suffixes.
|
||
"""
|
||
def __get__(self):
|
||
if self.c.lemma == 0:
|
||
return self.vocab.morphology.lemmatizer.lookup(self.orth_)
|
||
else:
|
||
return self.vocab.strings[self.c.lemma]
|
||
|
||
def __set__(self, unicode lemma_):
|
||
self.c.lemma = self.vocab.strings.add(lemma_)
|
||
|
||
property pos_:
|
||
"""RETURNS (unicode): Coarse-grained part-of-speech tag."""
|
||
def __get__(self):
|
||
return parts_of_speech.NAMES[self.c.pos]
|
||
def __set__(self, pos_name):
|
||
self.c.pos = parts_of_speech.IDS[pos_name]
|
||
|
||
property tag_:
|
||
"""RETURNS (unicode): Fine-grained part-of-speech tag."""
|
||
def __get__(self):
|
||
return self.vocab.strings[self.c.tag]
|
||
|
||
def __set__(self, tag):
|
||
self.tag = self.vocab.strings.add(tag)
|
||
|
||
property dep_:
|
||
"""RETURNS (unicode): The syntactic dependency label."""
|
||
def __get__(self):
|
||
return self.vocab.strings[self.c.dep]
|
||
|
||
def __set__(self, unicode label):
|
||
self.c.dep = self.vocab.strings.add(label)
|
||
|
||
property is_oov:
|
||
"""RETURNS (bool): Whether the token is out-of-vocabulary."""
|
||
def __get__(self):
|
||
return Lexeme.c_check_flag(self.c.lex, IS_OOV)
|
||
|
||
property is_stop:
|
||
"""RETURNS (bool): Whether the token is a stop word, i.e. part of a
|
||
"stop list" defined by the language data.
|
||
"""
|
||
def __get__(self):
|
||
return Lexeme.c_check_flag(self.c.lex, IS_STOP)
|
||
|
||
property is_alpha:
|
||
"""RETURNS (bool): Whether the token consists of alpha characters.
|
||
Equivalent to `token.text.isalpha()`.
|
||
"""
|
||
def __get__(self):
|
||
return Lexeme.c_check_flag(self.c.lex, IS_ALPHA)
|
||
|
||
property is_ascii:
|
||
"""RETURNS (bool): Whether the token consists of ASCII characters.
|
||
Equivalent to `[any(ord(c) >= 128 for c in token.text)]`.
|
||
"""
|
||
def __get__(self):
|
||
return Lexeme.c_check_flag(self.c.lex, IS_ASCII)
|
||
|
||
property is_digit:
|
||
"""RETURNS (bool): Whether the token consists of digits. Equivalent to
|
||
`token.text.isdigit()`.
|
||
"""
|
||
def __get__(self):
|
||
return Lexeme.c_check_flag(self.c.lex, IS_DIGIT)
|
||
|
||
property is_lower:
|
||
"""RETURNS (bool): Whether the token is in lowercase. Equivalent to
|
||
`token.text.islower()`.
|
||
"""
|
||
def __get__(self):
|
||
return Lexeme.c_check_flag(self.c.lex, IS_LOWER)
|
||
|
||
property is_upper:
|
||
"""RETURNS (bool): Whether the token is in uppercase. Equivalent to
|
||
`token.text.isupper()`
|
||
"""
|
||
def __get__(self):
|
||
return Lexeme.c_check_flag(self.c.lex, IS_UPPER)
|
||
|
||
property is_title:
|
||
"""RETURNS (bool): Whether the token is in titlecase. Equivalent to
|
||
`token.text.istitle()`.
|
||
"""
|
||
def __get__(self):
|
||
return Lexeme.c_check_flag(self.c.lex, IS_TITLE)
|
||
|
||
property is_punct:
|
||
"""RETURNS (bool): Whether the token is punctuation."""
|
||
def __get__(self):
|
||
return Lexeme.c_check_flag(self.c.lex, IS_PUNCT)
|
||
|
||
property is_space:
|
||
"""RETURNS (bool): Whether the token consists of whitespace characters.
|
||
Equivalent to `token.text.isspace()`.
|
||
"""
|
||
def __get__(self):
|
||
return Lexeme.c_check_flag(self.c.lex, IS_SPACE)
|
||
|
||
property is_bracket:
|
||
"""RETURNS (bool): Whether the token is a bracket."""
|
||
def __get__(self):
|
||
return Lexeme.c_check_flag(self.c.lex, IS_BRACKET)
|
||
|
||
property is_quote:
|
||
"""RETURNS (bool): Whether the token is a quotation mark."""
|
||
def __get__(self):
|
||
return Lexeme.c_check_flag(self.c.lex, IS_QUOTE)
|
||
|
||
property is_left_punct:
|
||
"""RETURNS (bool): Whether the token is a left punctuation mark."""
|
||
def __get__(self):
|
||
return Lexeme.c_check_flag(self.c.lex, IS_LEFT_PUNCT)
|
||
|
||
property is_right_punct:
|
||
"""RETURNS (bool): Whether the token is a left punctuation mark."""
|
||
def __get__(self):
|
||
return Lexeme.c_check_flag(self.c.lex, IS_RIGHT_PUNCT)
|
||
|
||
property is_currency:
|
||
"""RETURNS (bool): Whether the token is a currency symbol."""
|
||
def __get__(self):
|
||
return Lexeme.c_check_flag(self.c.lex, IS_CURRENCY)
|
||
|
||
property like_url:
|
||
"""RETURNS (bool): Whether the token resembles a URL."""
|
||
def __get__(self):
|
||
return Lexeme.c_check_flag(self.c.lex, LIKE_URL)
|
||
|
||
property like_num:
|
||
"""RETURNS (bool): Whether the token resembles a number, e.g. "10.9",
|
||
"10", "ten", etc.
|
||
"""
|
||
def __get__(self):
|
||
return Lexeme.c_check_flag(self.c.lex, LIKE_NUM)
|
||
|
||
property like_email:
|
||
"""RETURNS (bool): Whether the token resembles an email address."""
|
||
def __get__(self):
|
||
return Lexeme.c_check_flag(self.c.lex, LIKE_EMAIL)
|