spaCy/spacy/ml/tb_framework.py
Sofie Van Landeghem e7d747e3ee
TransitionBasedParser.v1 to legacy (#8586)
* TransitionBasedParser.v1 to legacy

* register sublayers

* bump spacy-legacy to 3.0.7
2021-07-06 15:26:45 +02:00

51 lines
1.4 KiB
Python

from thinc.api import Model, noop
from .parser_model import ParserStepModel
from ..util import registry
@registry.layers("spacy.TransitionModel.v1")
def TransitionModel(
tok2vec, lower, upper, resize_output, dropout=0.2, unseen_classes=set()
):
"""Set up a stepwise transition-based model"""
if upper is None:
has_upper = False
upper = noop()
else:
has_upper = True
# don't define nO for this object, because we can't dynamically change it
return Model(
name="parser_model",
forward=forward,
dims={"nI": tok2vec.maybe_get_dim("nI")},
layers=[tok2vec, lower, upper],
refs={"tok2vec": tok2vec, "lower": lower, "upper": upper},
init=init,
attrs={
"has_upper": has_upper,
"unseen_classes": set(unseen_classes),
"resize_output": resize_output,
},
)
def forward(model, X, is_train):
step_model = ParserStepModel(
X,
model.layers,
unseen_classes=model.attrs["unseen_classes"],
train=is_train,
has_upper=model.attrs["has_upper"],
)
return step_model, step_model.finish_steps
def init(model, X=None, Y=None):
model.get_ref("tok2vec").initialize(X=X)
lower = model.get_ref("lower")
lower.initialize()
if model.attrs["has_upper"]:
statevecs = model.ops.alloc2f(2, lower.get_dim("nO"))
model.get_ref("upper").initialize(X=statevecs)