mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-15 22:27:12 +03:00
657af5f91f
* 🚨 Ignore all existing Mypy errors * 🏗 Add Mypy check to CI * Add types-mock and types-requests as dev requirements * Add additional type ignore directives * Add types packages to dev-only list in reqs test * Add types-dataclasses for python 3.6 * Add ignore to pretrain * 🏷 Improve type annotation on `run_command` helper The `run_command` helper previously declared that it returned an `Optional[subprocess.CompletedProcess]`, but it isn't actually possible for the function to return `None`. These changes modify the type annotation of the `run_command` helper and remove all now-unnecessary `# type: ignore` directives. * 🔧 Allow variable type redefinition in limited contexts These changes modify how Mypy is configured to allow variables to have their type automatically redefined under certain conditions. The Mypy documentation contains the following example: ```python def process(items: List[str]) -> None: # 'items' has type List[str] items = [item.split() for item in items] # 'items' now has type List[List[str]] ... ``` This configuration change is especially helpful in reducing the number of `# type: ignore` directives needed to handle the common pattern of: * Accepting a filepath as a string * Overwriting the variable using `filepath = ensure_path(filepath)` These changes enable redefinition and remove all `# type: ignore` directives rendered redundant by this change. * 🏷 Add type annotation to converters mapping * 🚨 Fix Mypy error in convert CLI argument verification * 🏷 Improve type annotation on `resolve_dot_names` helper * 🏷 Add type annotations for `Vocab` attributes `strings` and `vectors` * 🏷 Add type annotations for more `Vocab` attributes * 🏷 Add loose type annotation for gold data compilation * 🏷 Improve `_format_labels` type annotation * 🏷 Fix `get_lang_class` type annotation * 🏷 Loosen return type of `Language.evaluate` * 🏷 Don't accept `Scorer` in `handle_scores_per_type` * 🏷 Add `string_to_list` overloads * 🏷 Fix non-Optional command-line options * 🙈 Ignore redefinition of `wandb_logger` in `loggers.py` * ➕ Install `typing_extensions` in Python 3.8+ The `typing_extensions` package states that it should be used when "writing code that must be compatible with multiple Python versions". Since SpaCy needs to support multiple Python versions, it should be used when newer `typing` module members are required. One example of this is `Literal`, which is available starting with Python 3.8. Previously SpaCy tried to import `Literal` from `typing`, falling back to `typing_extensions` if the import failed. However, Mypy doesn't seem to be able to understand what `Literal` means when the initial import means. Therefore, these changes modify how `compat` imports `Literal` by always importing it from `typing_extensions`. These changes also modify how `typing_extensions` is installed, so that it is a requirement for all Python versions, including those greater than or equal to 3.8. * 🏷 Improve type annotation for `Language.pipe` These changes add a missing overload variant to the type signature of `Language.pipe`. Additionally, the type signature is enhanced to allow type checkers to differentiate between the two overload variants based on the `as_tuple` parameter. Fixes #8772 * ➖ Don't install `typing-extensions` in Python 3.8+ After more detailed analysis of how to implement Python version-specific type annotations using SpaCy, it has been determined that by branching on a comparison against `sys.version_info` can be statically analyzed by Mypy well enough to enable us to conditionally use `typing_extensions.Literal`. This means that we no longer need to install `typing_extensions` for Python versions greater than or equal to 3.8! 🎉 These changes revert previous changes installing `typing-extensions` regardless of Python version and modify how we import the `Literal` type to ensure that Mypy treats it properly. * resolve mypy errors for Strict pydantic types * refactor code to avoid missing return statement * fix types of convert CLI command * avoid list-set confustion in debug_data * fix typo and formatting * small fixes to avoid type ignores * fix types in profile CLI command and make it more efficient * type fixes in projects CLI * put one ignore back * type fixes for render * fix render types - the sequel * fix BaseDefault in language definitions * fix type of noun_chunks iterator - yields tuple instead of span * fix types in language-specific modules * 🏷 Expand accepted inputs of `get_string_id` `get_string_id` accepts either a string (in which case it returns its ID) or an ID (in which case it immediately returns the ID). These changes extend the type annotation of `get_string_id` to indicate that it can accept either strings or IDs. * 🏷 Handle override types in `combine_score_weights` The `combine_score_weights` function allows users to pass an `overrides` mapping to override data extracted from the `weights` argument. Since it allows `Optional` dictionary values, the return value may also include `Optional` dictionary values. These changes update the type annotations for `combine_score_weights` to reflect this fact. * 🏷 Fix tokenizer serialization method signatures in `DummyTokenizer` * 🏷 Fix redefinition of `wandb_logger` These changes fix the redefinition of `wandb_logger` by giving a separate name to each `WandbLogger` version. For backwards-compatibility, `spacy.train` still exports `wandb_logger_v3` as `wandb_logger` for now. * more fixes for typing in language * type fixes in model definitions * 🏷 Annotate `_RandomWords.probs` as `NDArray` * 🏷 Annotate `tok2vec` layers to help Mypy * 🐛 Fix `_RandomWords.probs` type annotations for Python 3.6 Also remove an import that I forgot to move to the top of the module 😅 * more fixes for matchers and other pipeline components * quick fix for entity linker * fixing types for spancat, textcat, etc * bugfix for tok2vec * type annotations for scorer * add runtime_checkable for Protocol * type and import fixes in tests * mypy fixes for training utilities * few fixes in util * fix import * 🐵 Remove unused `# type: ignore` directives * 🏷 Annotate `Language._components` * 🏷 Annotate `spacy.pipeline.Pipe` * add doc as property to span.pyi * small fixes and cleanup * explicit type annotations instead of via comment Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: svlandeg <svlandeg@github.com>
252 lines
8.6 KiB
Python
252 lines
8.6 KiB
Python
from typing import Any, Optional, Iterable, Tuple, List, Callable, TYPE_CHECKING, cast
|
|
from thinc.types import Floats2d
|
|
from thinc.api import chain, Maxout, LayerNorm, Softmax, Linear, zero_init, Model
|
|
from thinc.api import MultiSoftmax, list2array
|
|
from thinc.api import to_categorical, CosineDistance, L2Distance
|
|
from thinc.loss import Loss
|
|
|
|
from ...util import registry, OOV_RANK
|
|
from ...errors import Errors
|
|
from ...attrs import ID
|
|
|
|
import numpy
|
|
from functools import partial
|
|
|
|
if TYPE_CHECKING:
|
|
# This lets us add type hints for mypy etc. without causing circular imports
|
|
from ...vocab import Vocab # noqa: F401
|
|
from ...tokens.doc import Doc # noqa: F401
|
|
|
|
|
|
@registry.architectures("spacy.PretrainVectors.v1")
|
|
def create_pretrain_vectors(
|
|
maxout_pieces: int, hidden_size: int, loss: str
|
|
) -> Callable[["Vocab", Model], Model]:
|
|
def create_vectors_objective(vocab: "Vocab", tok2vec: Model) -> Model:
|
|
if vocab.vectors.data.shape[1] == 0:
|
|
raise ValueError(Errors.E875)
|
|
model = build_cloze_multi_task_model(
|
|
vocab, tok2vec, hidden_size=hidden_size, maxout_pieces=maxout_pieces
|
|
)
|
|
model.attrs["loss"] = create_vectors_loss()
|
|
return model
|
|
|
|
def create_vectors_loss() -> Callable:
|
|
distance: Loss
|
|
if loss == "cosine":
|
|
distance = CosineDistance(normalize=True, ignore_zeros=True)
|
|
return partial(get_vectors_loss, distance=distance)
|
|
elif loss == "L2":
|
|
distance = L2Distance(normalize=True)
|
|
return partial(get_vectors_loss, distance=distance)
|
|
else:
|
|
raise ValueError(Errors.E906.format(found=loss, supported="'cosine', 'L2'"))
|
|
|
|
return create_vectors_objective
|
|
|
|
|
|
@registry.architectures("spacy.PretrainCharacters.v1")
|
|
def create_pretrain_characters(
|
|
maxout_pieces: int, hidden_size: int, n_characters: int
|
|
) -> Callable[["Vocab", Model], Model]:
|
|
def create_characters_objective(vocab: "Vocab", tok2vec: Model) -> Model:
|
|
model = build_cloze_characters_multi_task_model(
|
|
vocab,
|
|
tok2vec,
|
|
hidden_size=hidden_size,
|
|
maxout_pieces=maxout_pieces,
|
|
nr_char=n_characters,
|
|
)
|
|
model.attrs["loss"] = partial(get_characters_loss, nr_char=n_characters)
|
|
return model
|
|
|
|
return create_characters_objective
|
|
|
|
|
|
def get_vectors_loss(ops, docs, prediction, distance):
|
|
"""Compute a loss based on a distance between the documents' vectors and
|
|
the prediction.
|
|
"""
|
|
# The simplest way to implement this would be to vstack the
|
|
# token.vector values, but that's a bit inefficient, especially on GPU.
|
|
# Instead we fetch the index into the vectors table for each of our tokens,
|
|
# and look them up all at once. This prevents data copying.
|
|
ids = ops.flatten([doc.to_array(ID).ravel() for doc in docs])
|
|
target = docs[0].vocab.vectors.data[ids]
|
|
target[ids == OOV_RANK] = 0
|
|
d_target, loss = distance(prediction, target)
|
|
return loss, d_target
|
|
|
|
|
|
def get_characters_loss(ops, docs, prediction, nr_char):
|
|
"""Compute a loss based on a number of characters predicted from the docs."""
|
|
target_ids = numpy.vstack([doc.to_utf8_array(nr_char=nr_char) for doc in docs])
|
|
target_ids = target_ids.reshape((-1,))
|
|
target = ops.asarray(to_categorical(target_ids, n_classes=256), dtype="f")
|
|
target = target.reshape((-1, 256 * nr_char))
|
|
diff = prediction - target
|
|
loss = (diff ** 2).sum()
|
|
d_target = diff / float(prediction.shape[0])
|
|
return loss, d_target
|
|
|
|
|
|
def build_multi_task_model(
|
|
tok2vec: Model,
|
|
maxout_pieces: int,
|
|
token_vector_width: int,
|
|
nO: Optional[int] = None,
|
|
) -> Model:
|
|
softmax = Softmax(nO=nO, nI=token_vector_width * 2)
|
|
model = chain(
|
|
tok2vec,
|
|
Maxout(
|
|
nO=token_vector_width * 2,
|
|
nI=token_vector_width,
|
|
nP=maxout_pieces,
|
|
dropout=0.0,
|
|
),
|
|
LayerNorm(token_vector_width * 2),
|
|
softmax,
|
|
)
|
|
model.set_ref("tok2vec", tok2vec)
|
|
model.set_ref("output_layer", softmax)
|
|
return model
|
|
|
|
|
|
def build_cloze_multi_task_model(
|
|
vocab: "Vocab", tok2vec: Model, maxout_pieces: int, hidden_size: int
|
|
) -> Model:
|
|
nO = vocab.vectors.data.shape[1]
|
|
output_layer = chain(
|
|
cast(Model[List["Floats2d"], Floats2d], list2array()),
|
|
Maxout(
|
|
nO=hidden_size,
|
|
nI=tok2vec.get_dim("nO"),
|
|
nP=maxout_pieces,
|
|
normalize=True,
|
|
dropout=0.0,
|
|
),
|
|
Linear(nO=nO, nI=hidden_size, init_W=zero_init),
|
|
)
|
|
model = chain(tok2vec, output_layer)
|
|
model = build_masked_language_model(vocab, model)
|
|
model.set_ref("tok2vec", tok2vec)
|
|
model.set_ref("output_layer", output_layer)
|
|
return model
|
|
|
|
|
|
def build_cloze_characters_multi_task_model(
|
|
vocab: "Vocab", tok2vec: Model, maxout_pieces: int, hidden_size: int, nr_char: int
|
|
) -> Model:
|
|
output_layer = chain(
|
|
cast(Model[List["Floats2d"], Floats2d], list2array()),
|
|
Maxout(nO=hidden_size, nP=maxout_pieces),
|
|
LayerNorm(nI=hidden_size),
|
|
MultiSoftmax([256] * nr_char, nI=hidden_size), # type: ignore[arg-type]
|
|
)
|
|
model = build_masked_language_model(vocab, chain(tok2vec, output_layer))
|
|
model.set_ref("tok2vec", tok2vec)
|
|
model.set_ref("output_layer", output_layer)
|
|
return model
|
|
|
|
|
|
def build_masked_language_model(
|
|
vocab: "Vocab", wrapped_model: Model, mask_prob: float = 0.15
|
|
) -> Model:
|
|
"""Convert a model into a BERT-style masked language model"""
|
|
random_words = _RandomWords(vocab)
|
|
|
|
def mlm_forward(model, docs, is_train):
|
|
mask, docs = _apply_mask(docs, random_words, mask_prob=mask_prob)
|
|
mask = model.ops.asarray(mask).reshape((mask.shape[0], 1))
|
|
output, backprop = model.layers[0](docs, is_train)
|
|
|
|
def mlm_backward(d_output):
|
|
d_output *= 1 - mask
|
|
return backprop(d_output)
|
|
|
|
return output, mlm_backward
|
|
|
|
def mlm_initialize(model: Model, X=None, Y=None):
|
|
wrapped = model.layers[0]
|
|
wrapped.initialize(X=X, Y=Y)
|
|
for dim in wrapped.dim_names:
|
|
if wrapped.has_dim(dim):
|
|
model.set_dim(dim, wrapped.get_dim(dim))
|
|
|
|
mlm_model: Model = Model(
|
|
"masked-language-model",
|
|
mlm_forward,
|
|
layers=[wrapped_model],
|
|
init=mlm_initialize,
|
|
refs={"wrapped": wrapped_model},
|
|
dims={dim: None for dim in wrapped_model.dim_names},
|
|
)
|
|
mlm_model.set_ref("wrapped", wrapped_model)
|
|
return mlm_model
|
|
|
|
|
|
class _RandomWords:
|
|
def __init__(self, vocab: "Vocab") -> None:
|
|
# Extract lexeme representations
|
|
self.words = [lex.text for lex in vocab if lex.prob != 0.0]
|
|
self.words = self.words[:10000]
|
|
|
|
# Compute normalized lexeme probabilities
|
|
probs = [lex.prob for lex in vocab if lex.prob != 0.0]
|
|
probs = probs[:10000]
|
|
probs: numpy.ndarray = numpy.exp(numpy.array(probs, dtype="f"))
|
|
probs /= probs.sum()
|
|
self.probs = probs
|
|
|
|
# Initialize cache
|
|
self._cache: List[int] = []
|
|
|
|
def next(self) -> str:
|
|
if not self._cache:
|
|
self._cache.extend(
|
|
numpy.random.choice(len(self.words), 10000, p=self.probs)
|
|
)
|
|
index = self._cache.pop()
|
|
return self.words[index]
|
|
|
|
|
|
def _apply_mask(
|
|
docs: Iterable["Doc"], random_words: _RandomWords, mask_prob: float = 0.15
|
|
) -> Tuple[numpy.ndarray, List["Doc"]]:
|
|
# This needs to be here to avoid circular imports
|
|
from ...tokens.doc import Doc # noqa: F811
|
|
|
|
N = sum(len(doc) for doc in docs)
|
|
mask = numpy.random.uniform(0.0, 1.0, (N,))
|
|
mask = mask >= mask_prob
|
|
i = 0
|
|
masked_docs = []
|
|
for doc in docs:
|
|
words = []
|
|
for token in doc:
|
|
if not mask[i]:
|
|
word = _replace_word(token.text, random_words)
|
|
else:
|
|
word = token.text
|
|
words.append(word)
|
|
i += 1
|
|
spaces = [bool(w.whitespace_) for w in doc]
|
|
# NB: If you change this implementation to instead modify
|
|
# the docs in place, take care that the IDs reflect the original
|
|
# words. Currently we use the original docs to make the vectors
|
|
# for the target, so we don't lose the original tokens. But if
|
|
# you modified the docs in place here, you would.
|
|
masked_docs.append(Doc(doc.vocab, words=words, spaces=spaces))
|
|
return mask, masked_docs
|
|
|
|
|
|
def _replace_word(word: str, random_words: _RandomWords, mask: str = "[MASK]") -> str:
|
|
roll = numpy.random.random()
|
|
if roll < 0.8:
|
|
return mask
|
|
elif roll < 0.9:
|
|
return random_words.next()
|
|
else:
|
|
return word
|