spaCy/spacy/lang/th/__init__.py
Ines Montani eddeb36c96
💫 Tidy up and auto-format .py files (#2983)
<!--- Provide a general summary of your changes in the title. -->

## Description
- [x] Use [`black`](https://github.com/ambv/black) to auto-format all `.py` files.
- [x] Update flake8 config to exclude very large files (lemmatization tables etc.)
- [x] Update code to be compatible with flake8 rules
- [x] Fix various small bugs, inconsistencies and messy stuff in the language data
- [x] Update docs to explain new code style (`black`, `flake8`, when to use `# fmt: off` and `# fmt: on` and what `# noqa` means)

Once #2932 is merged, which auto-formats and tidies up the CLI, we'll be able to run `flake8 spacy` actually get meaningful results.

At the moment, the code style and linting isn't applied automatically, but I'm hoping that the new [GitHub Actions](https://github.com/features/actions) will let us auto-format pull requests and post comments with relevant linting information.

### Types of change
enhancement, code style

## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-11-30 17:03:03 +01:00

38 lines
1.0 KiB
Python

# coding: utf8
from __future__ import unicode_literals
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
from .tag_map import TAG_MAP
from .stop_words import STOP_WORDS
from ...tokens import Doc
from ...language import Language
from ...attrs import LANG
class ThaiDefaults(Language.Defaults):
lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
lex_attr_getters[LANG] = lambda text: "th"
tokenizer_exceptions = dict(TOKENIZER_EXCEPTIONS)
tag_map = TAG_MAP
stop_words = STOP_WORDS
class Thai(Language):
lang = "th"
Defaults = ThaiDefaults
def make_doc(self, text):
try:
from pythainlp.tokenize import word_tokenize
except ImportError:
raise ImportError(
"The Thai tokenizer requires the PyThaiNLP library: "
"https://github.com/PyThaiNLP/pythainlp"
)
words = [x for x in list(word_tokenize(text, "newmm"))]
return Doc(self.vocab, words=words, spaces=[False] * len(words))
__all__ = ["Thai"]