mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	* Use isort with Black profile * isort all the things * Fix import cycles as a result of import sorting * Add DOCBIN_ALL_ATTRS type definition * Add isort to requirements * Remove isort from build dependencies check * Typo
		
			
				
	
	
		
			329 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
			
		
		
	
	
			329 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
# cython: infer_types=True, profile=True, binding=True
 | 
						|
import warnings
 | 
						|
from itertools import islice
 | 
						|
from typing import Callable, Optional
 | 
						|
 | 
						|
import numpy
 | 
						|
import srsly
 | 
						|
from thinc.api import Config, Model, SequenceCategoricalCrossentropy, set_dropout_rate
 | 
						|
from thinc.types import Floats2d
 | 
						|
 | 
						|
from ..morphology cimport Morphology
 | 
						|
from ..tokens.doc cimport Doc
 | 
						|
from ..vocab cimport Vocab
 | 
						|
 | 
						|
from .. import util
 | 
						|
from ..attrs import ID, POS
 | 
						|
from ..errors import Errors, Warnings
 | 
						|
from ..language import Language
 | 
						|
from ..parts_of_speech import X
 | 
						|
from ..scorer import Scorer
 | 
						|
from ..training import validate_examples, validate_get_examples
 | 
						|
from ..util import registry
 | 
						|
from .pipe import deserialize_config
 | 
						|
from .trainable_pipe import TrainablePipe
 | 
						|
 | 
						|
# See #9050
 | 
						|
BACKWARD_OVERWRITE = False
 | 
						|
 | 
						|
default_model_config = """
 | 
						|
[model]
 | 
						|
@architectures = "spacy.Tagger.v2"
 | 
						|
 | 
						|
[model.tok2vec]
 | 
						|
@architectures = "spacy.HashEmbedCNN.v2"
 | 
						|
pretrained_vectors = null
 | 
						|
width = 96
 | 
						|
depth = 4
 | 
						|
embed_size = 2000
 | 
						|
window_size = 1
 | 
						|
maxout_pieces = 3
 | 
						|
subword_features = true
 | 
						|
"""
 | 
						|
DEFAULT_TAGGER_MODEL = Config().from_str(default_model_config)["model"]
 | 
						|
 | 
						|
 | 
						|
@Language.factory(
 | 
						|
    "tagger",
 | 
						|
    assigns=["token.tag"],
 | 
						|
    default_config={"model": DEFAULT_TAGGER_MODEL, "overwrite": False, "scorer": {"@scorers": "spacy.tagger_scorer.v1"}, "neg_prefix": "!", "label_smoothing": 0.0},
 | 
						|
    default_score_weights={"tag_acc": 1.0},
 | 
						|
)
 | 
						|
def make_tagger(
 | 
						|
    nlp: Language,
 | 
						|
    name: str,
 | 
						|
    model: Model,
 | 
						|
    overwrite: bool,
 | 
						|
    scorer: Optional[Callable],
 | 
						|
    neg_prefix: str,
 | 
						|
    label_smoothing: float,
 | 
						|
):
 | 
						|
    """Construct a part-of-speech tagger component.
 | 
						|
 | 
						|
    model (Model[List[Doc], List[Floats2d]]): A model instance that predicts
 | 
						|
        the tag probabilities. The output vectors should match the number of tags
 | 
						|
        in size, and be normalized as probabilities (all scores between 0 and 1,
 | 
						|
        with the rows summing to 1).
 | 
						|
    """
 | 
						|
    return Tagger(nlp.vocab, model, name, overwrite=overwrite, scorer=scorer, neg_prefix=neg_prefix, label_smoothing=label_smoothing)
 | 
						|
 | 
						|
 | 
						|
def tagger_score(examples, **kwargs):
 | 
						|
    return Scorer.score_token_attr(examples, "tag", **kwargs)
 | 
						|
 | 
						|
 | 
						|
@registry.scorers("spacy.tagger_scorer.v1")
 | 
						|
def make_tagger_scorer():
 | 
						|
    return tagger_score
 | 
						|
 | 
						|
 | 
						|
class Tagger(TrainablePipe):
 | 
						|
    """Pipeline component for part-of-speech tagging.
 | 
						|
 | 
						|
    DOCS: https://spacy.io/api/tagger
 | 
						|
    """
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        vocab,
 | 
						|
        model,
 | 
						|
        name="tagger",
 | 
						|
        *,
 | 
						|
        overwrite=BACKWARD_OVERWRITE,
 | 
						|
        scorer=tagger_score,
 | 
						|
        neg_prefix="!",
 | 
						|
        label_smoothing=0.0,
 | 
						|
    ):
 | 
						|
        """Initialize a part-of-speech tagger.
 | 
						|
 | 
						|
        vocab (Vocab): The shared vocabulary.
 | 
						|
        model (thinc.api.Model): The Thinc Model powering the pipeline component.
 | 
						|
        name (str): The component instance name, used to add entries to the
 | 
						|
            losses during training.
 | 
						|
        scorer (Optional[Callable]): The scoring method. Defaults to
 | 
						|
            Scorer.score_token_attr for the attribute "tag".
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/tagger#init
 | 
						|
        """
 | 
						|
        self.vocab = vocab
 | 
						|
        self.model = model
 | 
						|
        self.name = name
 | 
						|
        self._rehearsal_model = None
 | 
						|
        cfg = {"labels": [], "overwrite": overwrite, "neg_prefix": neg_prefix, "label_smoothing": label_smoothing}
 | 
						|
        self.cfg = dict(sorted(cfg.items()))
 | 
						|
        self.scorer = scorer
 | 
						|
 | 
						|
    @property
 | 
						|
    def labels(self):
 | 
						|
        """The labels currently added to the component. Note that even for a
 | 
						|
        blank component, this will always include the built-in coarse-grained
 | 
						|
        part-of-speech tags by default.
 | 
						|
 | 
						|
        RETURNS (Tuple[str]): The labels.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/tagger#labels
 | 
						|
        """
 | 
						|
        return tuple(self.cfg["labels"])
 | 
						|
 | 
						|
    @property
 | 
						|
    def label_data(self):
 | 
						|
        """Data about the labels currently added to the component."""
 | 
						|
        return tuple(self.cfg["labels"])
 | 
						|
 | 
						|
    def predict(self, docs):
 | 
						|
        """Apply the pipeline's model to a batch of docs, without modifying them.
 | 
						|
 | 
						|
        docs (Iterable[Doc]): The documents to predict.
 | 
						|
        RETURNS: The models prediction for each document.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/tagger#predict
 | 
						|
        """
 | 
						|
        if not any(len(doc) for doc in docs):
 | 
						|
            # Handle cases where there are no tokens in any docs.
 | 
						|
            n_labels = len(self.labels)
 | 
						|
            guesses = [self.model.ops.alloc((0, n_labels)) for doc in docs]
 | 
						|
            assert len(guesses) == len(docs)
 | 
						|
            return guesses
 | 
						|
        scores = self.model.predict(docs)
 | 
						|
        assert len(scores) == len(docs), (len(scores), len(docs))
 | 
						|
        guesses = self._scores2guesses(scores)
 | 
						|
        assert len(guesses) == len(docs)
 | 
						|
        return guesses
 | 
						|
 | 
						|
    def _scores2guesses(self, scores):
 | 
						|
        guesses = []
 | 
						|
        for doc_scores in scores:
 | 
						|
            doc_guesses = doc_scores.argmax(axis=1)
 | 
						|
            if not isinstance(doc_guesses, numpy.ndarray):
 | 
						|
                doc_guesses = doc_guesses.get()
 | 
						|
            guesses.append(doc_guesses)
 | 
						|
        return guesses
 | 
						|
 | 
						|
    def set_annotations(self, docs, batch_tag_ids):
 | 
						|
        """Modify a batch of documents, using pre-computed scores.
 | 
						|
 | 
						|
        docs (Iterable[Doc]): The documents to modify.
 | 
						|
        batch_tag_ids: The IDs to set, produced by Tagger.predict.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/tagger#set_annotations
 | 
						|
        """
 | 
						|
        if isinstance(docs, Doc):
 | 
						|
            docs = [docs]
 | 
						|
        cdef Doc doc
 | 
						|
        cdef Vocab vocab = self.vocab
 | 
						|
        cdef bint overwrite = self.cfg["overwrite"]
 | 
						|
        labels = self.labels
 | 
						|
        for i, doc in enumerate(docs):
 | 
						|
            doc_tag_ids = batch_tag_ids[i]
 | 
						|
            if hasattr(doc_tag_ids, "get"):
 | 
						|
                doc_tag_ids = doc_tag_ids.get()
 | 
						|
            for j, tag_id in enumerate(doc_tag_ids):
 | 
						|
                if doc.c[j].tag == 0 or overwrite:
 | 
						|
                    doc.c[j].tag = self.vocab.strings[labels[tag_id]]
 | 
						|
 | 
						|
    def update(self, examples, *, drop=0., sgd=None, losses=None):
 | 
						|
        """Learn from a batch of documents and gold-standard information,
 | 
						|
        updating the pipe's model. Delegates to predict and get_loss.
 | 
						|
 | 
						|
        examples (Iterable[Example]): A batch of Example objects.
 | 
						|
        drop (float): The dropout rate.
 | 
						|
        sgd (thinc.api.Optimizer): The optimizer.
 | 
						|
        losses (Dict[str, float]): Optional record of the loss during training.
 | 
						|
            Updated using the component name as the key.
 | 
						|
        RETURNS (Dict[str, float]): The updated losses dictionary.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/tagger#update
 | 
						|
        """
 | 
						|
        if losses is None:
 | 
						|
            losses = {}
 | 
						|
        losses.setdefault(self.name, 0.0)
 | 
						|
        validate_examples(examples, "Tagger.update")
 | 
						|
        if not any(len(eg.predicted) if eg.predicted else 0 for eg in examples):
 | 
						|
            # Handle cases where there are no tokens in any docs.
 | 
						|
            return losses
 | 
						|
        set_dropout_rate(self.model, drop)
 | 
						|
        tag_scores, bp_tag_scores = self.model.begin_update([eg.predicted for eg in examples])
 | 
						|
        for sc in tag_scores:
 | 
						|
            if self.model.ops.xp.isnan(sc.sum()):
 | 
						|
                raise ValueError(Errors.E940)
 | 
						|
        loss, d_tag_scores = self.get_loss(examples, tag_scores)
 | 
						|
        bp_tag_scores(d_tag_scores)
 | 
						|
        if sgd not in (None, False):
 | 
						|
            self.finish_update(sgd)
 | 
						|
 | 
						|
        losses[self.name] += loss
 | 
						|
        return losses
 | 
						|
 | 
						|
    def rehearse(self, examples, *, drop=0., sgd=None, losses=None):
 | 
						|
        """Perform a "rehearsal" update from a batch of data. Rehearsal updates
 | 
						|
        teach the current model to make predictions similar to an initial model,
 | 
						|
        to try to address the "catastrophic forgetting" problem. This feature is
 | 
						|
        experimental.
 | 
						|
 | 
						|
        examples (Iterable[Example]): A batch of Example objects.
 | 
						|
        drop (float): The dropout rate.
 | 
						|
        sgd (thinc.api.Optimizer): The optimizer.
 | 
						|
        losses (Dict[str, float]): Optional record of the loss during training.
 | 
						|
            Updated using the component name as the key.
 | 
						|
        RETURNS (Dict[str, float]): The updated losses dictionary.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/tagger#rehearse
 | 
						|
        """
 | 
						|
        loss_func = SequenceCategoricalCrossentropy()
 | 
						|
        if losses is None:
 | 
						|
            losses = {}
 | 
						|
        losses.setdefault(self.name, 0.0)
 | 
						|
        validate_examples(examples, "Tagger.rehearse")
 | 
						|
        docs = [eg.predicted for eg in examples]
 | 
						|
        if self._rehearsal_model is None:
 | 
						|
            return losses
 | 
						|
        if not any(len(doc) for doc in docs):
 | 
						|
            # Handle cases where there are no tokens in any docs.
 | 
						|
            return losses
 | 
						|
        set_dropout_rate(self.model, drop)
 | 
						|
        tag_scores, bp_tag_scores = self.model.begin_update(docs)
 | 
						|
        tutor_tag_scores, _ = self._rehearsal_model.begin_update(docs)
 | 
						|
        grads, loss = loss_func(tag_scores, tutor_tag_scores)
 | 
						|
        bp_tag_scores(grads)
 | 
						|
        self.finish_update(sgd)
 | 
						|
        losses[self.name] += loss
 | 
						|
        return losses
 | 
						|
 | 
						|
    def get_loss(self, examples, scores):
 | 
						|
        """Find the loss and gradient of loss for the batch of documents and
 | 
						|
        their predicted scores.
 | 
						|
 | 
						|
        examples (Iterable[Examples]): The batch of examples.
 | 
						|
        scores: Scores representing the model's predictions.
 | 
						|
        RETURNS (Tuple[float, float]): The loss and the gradient.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/tagger#get_loss
 | 
						|
        """
 | 
						|
        validate_examples(examples, "Tagger.get_loss")
 | 
						|
        loss_func = SequenceCategoricalCrossentropy(names=self.labels, normalize=False, neg_prefix=self.cfg["neg_prefix"], label_smoothing=self.cfg["label_smoothing"])
 | 
						|
        # Convert empty tag "" to missing value None so that both misaligned
 | 
						|
        # tokens and tokens with missing annotation have the default missing
 | 
						|
        # value None.
 | 
						|
        truths = []
 | 
						|
        for eg in examples:
 | 
						|
            eg_truths = [tag if tag is not "" else None for tag in eg.get_aligned("TAG", as_string=True)]
 | 
						|
            truths.append(eg_truths)
 | 
						|
        d_scores, loss = loss_func(scores, truths)
 | 
						|
        if self.model.ops.xp.isnan(loss):
 | 
						|
            raise ValueError(Errors.E910.format(name=self.name))
 | 
						|
        return float(loss), d_scores
 | 
						|
 | 
						|
    def initialize(self, get_examples, *, nlp=None, labels=None):
 | 
						|
        """Initialize the pipe for training, using a representative set
 | 
						|
        of data examples.
 | 
						|
 | 
						|
        get_examples (Callable[[], Iterable[Example]]): Function that
 | 
						|
            returns a representative sample of gold-standard Example objects..
 | 
						|
        nlp (Language): The current nlp object the component is part of.
 | 
						|
        labels: The labels to add to the component, typically generated by the
 | 
						|
            `init labels` command. If no labels are provided, the get_examples
 | 
						|
            callback is used to extract the labels from the data.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/tagger#initialize
 | 
						|
        """
 | 
						|
        validate_get_examples(get_examples, "Tagger.initialize")
 | 
						|
        util.check_lexeme_norms(self.vocab, "tagger")
 | 
						|
        if labels is not None:
 | 
						|
            for tag in labels:
 | 
						|
                self.add_label(tag)
 | 
						|
        else:
 | 
						|
            tags = set()
 | 
						|
            for example in get_examples():
 | 
						|
                for token in example.y:
 | 
						|
                    if token.tag_:
 | 
						|
                        tags.add(token.tag_)
 | 
						|
            for tag in sorted(tags):
 | 
						|
                self.add_label(tag)
 | 
						|
        doc_sample = []
 | 
						|
        label_sample = []
 | 
						|
        for example in islice(get_examples(), 10):
 | 
						|
            doc_sample.append(example.x)
 | 
						|
            gold_tags = example.get_aligned("TAG", as_string=True)
 | 
						|
            gold_array = [[1.0 if tag == gold_tag else 0.0 for tag in self.labels] for gold_tag in gold_tags]
 | 
						|
            label_sample.append(self.model.ops.asarray(gold_array, dtype="float32"))
 | 
						|
        self._require_labels()
 | 
						|
        assert len(doc_sample) > 0, Errors.E923.format(name=self.name)
 | 
						|
        assert len(label_sample) > 0, Errors.E923.format(name=self.name)
 | 
						|
        self.model.initialize(X=doc_sample, Y=label_sample)
 | 
						|
 | 
						|
    def add_label(self, label):
 | 
						|
        """Add a new label to the pipe.
 | 
						|
 | 
						|
        label (str): The label to add.
 | 
						|
        RETURNS (int): 0 if label is already present, otherwise 1.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/tagger#add_label
 | 
						|
        """
 | 
						|
        if not isinstance(label, str):
 | 
						|
            raise ValueError(Errors.E187)
 | 
						|
        if label in self.labels:
 | 
						|
            return 0
 | 
						|
        self._allow_extra_label()
 | 
						|
        self.cfg["labels"].append(label)
 | 
						|
        self.vocab.strings.add(label)
 | 
						|
        return 1
 |