spaCy/spacy/cli/convert.py
2020-06-20 15:55:35 +02:00

216 lines
7.3 KiB
Python

from pathlib import Path
from wasabi import Printer
import srsly
import re
import sys
from ..tokens import DocBin
from ..gold.converters import iob2docs, conll_ner2docs, json2docs
from ..gold.converters import ner_jsonl2docs
# Converters are matched by file extension except for ner/iob, which are
# matched by file extension and content. To add a converter, add a new
# entry to this dict with the file extension mapped to the converter function
# imported from /converters.
CONVERTERS = {
#"conllubio": conllu2docs, TODO
#"conllu": conllu2docs, TODO
#"conll": conllu2docs, TODO
"ner": conll_ner2docs,
"iob": iob2docs,
"jsonl": ner_jsonl2docs,
"json": json2docs,
}
ALL_ATTRS = [
"ORTH",
"TAG",
"HEAD",
"DEP",
"SENT_START",
"ENT_IOB",
"ENT_TYPE",
"LEMMA",
"MORPH",
]
# File types
FILE_TYPES = ("json", "jsonl", "msg")
FILE_TYPES_STDOUT = ("json", "jsonl")
def convert(
# fmt: off
input_path: ("Input file or directory", "positional", None, Path),
output_dir: ("Output directory.", "positional", None, Path),
file_type: (f"Type of data to produce: {FILE_TYPES}", "option", "t", str, FILE_TYPES) = "spacy",
n_sents: ("Number of sentences per doc (0 to disable)", "option", "n", int) = 1,
seg_sents: ("Segment sentences (for -c ner)", "flag", "s") = False,
model: ("Model for sentence segmentation (for -s)", "option", "b", str) = None,
morphology: ("Enable appending morphology to tags", "flag", "m", bool) = False,
merge_subtokens: ("Merge CoNLL-U subtokens", "flag", "T", bool) = False,
converter: (f"Converter: {tuple(CONVERTERS.keys())}", "option", "c", str) = "auto",
ner_map: ("NER tag mapping (as JSON-encoded dict of entity types)", "option", "N", Path) = None,
lang: ("Language (if tokenizer required)", "option", "l", str) = None,
# fmt: on
):
"""
Convert files into json or DocBin format for use with train command and other
experiment management functions.
"""
cli_args = locals()
no_print = output_dir == "-"
output_dir = Path(output_dir) if output_dir != "-" else "-"
msg = Printer(no_print=no_print)
verify_cli_args(msg, **cli_args)
converter = _get_converter(msg, converter, input_path)
ner_map = srsly.read_json(ner_map) if ner_map is not None else None
for input_loc in walk_directory(input_path):
input_data = input_loc.open("r", encoding="utf-8").read()
# Use converter function to convert data
func = CONVERTERS[converter]
docs = func(
input_data,
n_sents=n_sents,
seg_sents=seg_sents,
append_morphology=morphology,
merge_subtokens=merge_subtokens,
lang=lang,
model=model,
no_print=no_print,
ner_map=ner_map,
)
suffix = f".{file_type}"
subpath = input_loc.relative_to(input_path)
output_file = (output_dir / subpath).with_suffix(suffix)
if not output_file.parent.exists():
output_file.parent.mkdir(parents=True)
if file_type == "json":
data = docs2json(docs)
srsly.write_json(output_file, docs2json(docs))
else:
data = DocBin(attrs=ALL_ATTRS, docs=docs).to_bytes()
with output_file.open("wb") as file_:
file_.write(data)
msg.good(f"Generated output file ({len(docs)} documents): {output_file}")
def autodetect_ner_format(input_data):
# guess format from the first 20 lines
lines = input_data.split("\n")[:20]
format_guesses = {"ner": 0, "iob": 0}
iob_re = re.compile(r"\S+\|(O|[IB]-\S+)")
ner_re = re.compile(r"\S+\s+(O|[IB]-\S+)$")
for line in lines:
line = line.strip()
if iob_re.search(line):
format_guesses["iob"] += 1
if ner_re.search(line):
format_guesses["ner"] += 1
if format_guesses["iob"] == 0 and format_guesses["ner"] > 0:
return "ner"
if format_guesses["ner"] == 0 and format_guesses["iob"] > 0:
return "iob"
return None
def walk_directory(path):
if not path.is_dir():
return [path]
paths = [path]
locs = []
seen = set()
for path in paths:
if str(path) in seen:
continue
seen.add(str(path))
if path.parts[-1].startswith("."):
continue
elif path.is_dir():
paths.extend(path.iterdir())
else:
locs.append(path)
return locs
def verify_cli_args(
msg,
input_path,
output_dir,
file_type,
n_sents,
seg_sents,
model,
morphology,
merge_subtokens,
converter,
ner_map,
lang
):
if converter == "ner" or converter == "iob":
input_data = input_path.open("r", encoding="utf-8").read()
converter_autodetect = autodetect_ner_format(input_data)
if converter_autodetect == "ner":
msg.info("Auto-detected token-per-line NER format")
converter = converter_autodetect
elif converter_autodetect == "iob":
msg.info("Auto-detected sentence-per-line NER format")
converter = converter_autodetect
else:
msg.warn(
"Can't automatically detect NER format. Conversion may not",
"succeed. See https://spacy.io/api/cli#convert"
)
if file_type not in FILE_TYPES_STDOUT and output_dir == "-":
# TODO: support msgpack via stdout in srsly?
msg.fail(
f"Can't write .{file_type} data to stdout",
"Please specify an output directory.",
exits=1,
)
if not input_path.exists():
msg.fail("Input file not found", input_path, exits=1)
if output_dir != "-" and not Path(output_dir).exists():
msg.fail("Output directory not found", output_dir, exits=1)
if input_path.is_dir():
input_locs = walk_directory(input_path)
if len(input_locs) == 0:
msg.fail("No input files in directory", input_path, exits=1)
file_types = list(set([loc.suffix[1:] for loc in input_locs]))
if len(file_types) >= 2:
file_types = ",".join(file_types)
msg.fail("All input files must be same type", file_types, exits=1)
if converter == "auto":
converter = file_types[0]
else:
converter = input_path.suffix[1:]
if converter not in CONVERTERS:
msg.fail(f"Can't find converter for {converter}", exits=1)
return converter
def _get_converter(msg, converter, input_path):
if input_path.is_dir():
input_path = walk_directory(input_path)[0]
if converter == "auto":
converter = input_path.suffix[1:]
if converter == "ner" or converter == "iob":
with input_path.open() as file_:
input_data = file_.read()
converter_autodetect = autodetect_ner_format(input_data)
if converter_autodetect == "ner":
msg.info("Auto-detected token-per-line NER format")
converter = converter_autodetect
elif converter_autodetect == "iob":
msg.info("Auto-detected sentence-per-line NER format")
converter = converter_autodetect
else:
msg.warn(
"Can't automatically detect NER format. "
"Conversion may not succeed. "
"See https://spacy.io/api/cli#convert"
)
return converter