mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-03 22:06:37 +03:00
3f3e8110dc
* Fix aborted/skipped augmentation for `spacy.orth_variants.v1` if lowercasing was enabled for an example * Simplify `spacy.orth_variants.v1` for `Example` vs. `GoldParse` * Preserve reference tokenization in `spacy.lower_case.v1`
158 lines
5.4 KiB
Python
158 lines
5.4 KiB
Python
from typing import Callable, Iterator, Dict, List, Tuple, TYPE_CHECKING
|
|
import random
|
|
import itertools
|
|
from functools import partial
|
|
from pydantic import BaseModel, StrictStr
|
|
|
|
from ..util import registry
|
|
from .example import Example
|
|
|
|
if TYPE_CHECKING:
|
|
from ..language import Language # noqa: F401
|
|
|
|
|
|
class OrthVariantsSingle(BaseModel):
|
|
tags: List[StrictStr]
|
|
variants: List[StrictStr]
|
|
|
|
|
|
class OrthVariantsPaired(BaseModel):
|
|
tags: List[StrictStr]
|
|
variants: List[List[StrictStr]]
|
|
|
|
|
|
class OrthVariants(BaseModel):
|
|
paired: List[OrthVariantsPaired] = {}
|
|
single: List[OrthVariantsSingle] = {}
|
|
|
|
|
|
@registry.augmenters("spacy.orth_variants.v1")
|
|
def create_orth_variants_augmenter(
|
|
level: float, lower: float, orth_variants: OrthVariants
|
|
) -> Callable[["Language", Example], Iterator[Example]]:
|
|
"""Create a data augmentation callback that uses orth-variant replacement.
|
|
The callback can be added to a corpus or other data iterator during training.
|
|
|
|
level (float): The percentage of texts that will be augmented.
|
|
lower (float): The percentage of texts that will be lowercased.
|
|
orth_variants (Dict[str, dict]): A dictionary containing the single and
|
|
paired orth variants. Typically loaded from a JSON file.
|
|
RETURNS (Callable[[Language, Example], Iterator[Example]]): The augmenter.
|
|
"""
|
|
return partial(
|
|
orth_variants_augmenter, orth_variants=orth_variants, level=level, lower=lower
|
|
)
|
|
|
|
|
|
@registry.augmenters("spacy.lower_case.v1")
|
|
def create_lower_casing_augmenter(
|
|
level: float,
|
|
) -> Callable[["Language", Example], Iterator[Example]]:
|
|
"""Create a data augmentation callback that converts documents to lowercase.
|
|
The callback can be added to a corpus or other data iterator during training.
|
|
|
|
level (float): The percentage of texts that will be augmented.
|
|
RETURNS (Callable[[Language, Example], Iterator[Example]]): The augmenter.
|
|
"""
|
|
return partial(lower_casing_augmenter, level=level)
|
|
|
|
|
|
def dont_augment(nlp: "Language", example: Example) -> Iterator[Example]:
|
|
yield example
|
|
|
|
|
|
def lower_casing_augmenter(
|
|
nlp: "Language", example: Example, *, level: float
|
|
) -> Iterator[Example]:
|
|
if random.random() >= level:
|
|
yield example
|
|
else:
|
|
example_dict = example.to_dict()
|
|
doc = nlp.make_doc(example.text.lower())
|
|
example_dict["token_annotation"]["ORTH"] = [t.lower_ for t in example.reference]
|
|
yield example.from_dict(doc, example_dict)
|
|
|
|
|
|
def orth_variants_augmenter(
|
|
nlp: "Language",
|
|
example: Example,
|
|
orth_variants: dict,
|
|
*,
|
|
level: float = 0.0,
|
|
lower: float = 0.0,
|
|
) -> Iterator[Example]:
|
|
if random.random() >= level:
|
|
yield example
|
|
else:
|
|
raw_text = example.text
|
|
orig_dict = example.to_dict()
|
|
variant_text, variant_token_annot = make_orth_variants(
|
|
nlp,
|
|
raw_text,
|
|
orig_dict["token_annotation"],
|
|
orth_variants,
|
|
lower=raw_text is not None and random.random() < lower,
|
|
)
|
|
orig_dict["token_annotation"] = variant_token_annot
|
|
yield example.from_dict(nlp.make_doc(variant_text), orig_dict)
|
|
|
|
|
|
def make_orth_variants(
|
|
nlp: "Language",
|
|
raw: str,
|
|
token_dict: Dict[str, List[str]],
|
|
orth_variants: Dict[str, List[Dict[str, List[str]]]],
|
|
*,
|
|
lower: bool = False,
|
|
) -> Tuple[str, Dict[str, List[str]]]:
|
|
words = token_dict.get("ORTH", [])
|
|
tags = token_dict.get("TAG", [])
|
|
# keep unmodified if words are not defined
|
|
if not words:
|
|
return raw, token_dict
|
|
if lower:
|
|
words = [w.lower() for w in words]
|
|
raw = raw.lower()
|
|
# if no tags, only lowercase
|
|
if not tags:
|
|
token_dict["ORTH"] = words
|
|
return raw, token_dict
|
|
# single variants
|
|
ndsv = orth_variants.get("single", [])
|
|
punct_choices = [random.choice(x["variants"]) for x in ndsv]
|
|
for word_idx in range(len(words)):
|
|
for punct_idx in range(len(ndsv)):
|
|
if (
|
|
tags[word_idx] in ndsv[punct_idx]["tags"]
|
|
and words[word_idx] in ndsv[punct_idx]["variants"]
|
|
):
|
|
words[word_idx] = punct_choices[punct_idx]
|
|
# paired variants
|
|
ndpv = orth_variants.get("paired", [])
|
|
punct_choices = [random.choice(x["variants"]) for x in ndpv]
|
|
for word_idx in range(len(words)):
|
|
for punct_idx in range(len(ndpv)):
|
|
if tags[word_idx] in ndpv[punct_idx]["tags"] and words[
|
|
word_idx
|
|
] in itertools.chain.from_iterable(ndpv[punct_idx]["variants"]):
|
|
# backup option: random left vs. right from pair
|
|
pair_idx = random.choice([0, 1])
|
|
# best option: rely on paired POS tags like `` / ''
|
|
if len(ndpv[punct_idx]["tags"]) == 2:
|
|
pair_idx = ndpv[punct_idx]["tags"].index(tags[word_idx])
|
|
# next best option: rely on position in variants
|
|
# (may not be unambiguous, so order of variants matters)
|
|
else:
|
|
for pair in ndpv[punct_idx]["variants"]:
|
|
if words[word_idx] in pair:
|
|
pair_idx = pair.index(words[word_idx])
|
|
words[word_idx] = punct_choices[punct_idx][pair_idx]
|
|
token_dict["ORTH"] = words
|
|
# construct modified raw text from words and spaces
|
|
raw = ""
|
|
for orth, spacy in zip(token_dict["ORTH"], token_dict["SPACY"]):
|
|
raw += orth
|
|
if spacy:
|
|
raw += " "
|
|
return raw, token_dict
|