mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 07:27:28 +03:00 
			
		
		
		
	* document token ent_kb_id * document span kb_id * update pipeline documentation * prior and context weights as bool's instead * entitylinker api documentation * drop for both models * finish entitylinker documentation * small fixes * documentation for KB * candidate documentation * links to api pages in code * small fix * frequency examples as counts for consistency * consistent documentation about tensors returned by predict * add entity linking to usage 101 * add entity linking infobox and KB section to 101 * entity-linking in linguistic features * small typo corrections * training example and docs for entity_linker * predefined nlp and kb * revert back to similarity encodings for simplicity (for now) * set prior probabilities to 0 when excluded * code clean up * bugfix: deleting kb ID from tokens when entities were removed * refactor train el example to use either model or vocab * pretrain_kb example for example kb generation * add to training docs for KB + EL example scripts * small fixes * error numbering * ensure the language of vocab and nlp stay consistent across serialization * equality with = * avoid conflict in errors file * add error 151 * final adjustements to the train scripts - consistency * update of goldparse documentation * small corrections * push commit * typo fix * add candidate API to kb documentation * update API sidebar with EntityLinker and KnowledgeBase * remove EL from 101 docs * remove entity linker from 101 pipelines / rephrase * custom el model instead of existing model * set version to 2.2 for EL functionality * update documentation for 2 CLI scripts
		
			
				
	
	
		
			172 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			172 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #!/usr/bin/env python
 | |
| # coding: utf8
 | |
| 
 | |
| """Example of training spaCy's entity linker, starting off with an
 | |
| existing model and a pre-defined knowledge base.
 | |
| 
 | |
| For more details, see the documentation:
 | |
| * Training: https://spacy.io/usage/training
 | |
| * Entity Linking: https://spacy.io/usage/linguistic-features#entity-linking
 | |
| 
 | |
| Compatible with: spaCy v2.2
 | |
| Last tested with: v2.2
 | |
| """
 | |
| from __future__ import unicode_literals, print_function
 | |
| 
 | |
| import plac
 | |
| import random
 | |
| from pathlib import Path
 | |
| 
 | |
| from spacy.symbols import PERSON
 | |
| from spacy.vocab import Vocab
 | |
| 
 | |
| import spacy
 | |
| from spacy.kb import KnowledgeBase
 | |
| from spacy.tokens import Span
 | |
| from spacy.util import minibatch, compounding
 | |
| 
 | |
| 
 | |
| def sample_train_data():
 | |
|     train_data = []
 | |
| 
 | |
|     # Q2146908 (Russ Cochran): American golfer
 | |
|     # Q7381115 (Russ Cochran): publisher
 | |
| 
 | |
|     text_1 = "Russ Cochran his reprints include EC Comics."
 | |
|     dict_1 = {(0, 12): {"Q7381115": 1.0, "Q2146908": 0.0}}
 | |
|     train_data.append((text_1, {"links": dict_1}))
 | |
| 
 | |
|     text_2 = "Russ Cochran has been publishing comic art."
 | |
|     dict_2 = {(0, 12): {"Q7381115": 1.0, "Q2146908": 0.0}}
 | |
|     train_data.append((text_2, {"links": dict_2}))
 | |
| 
 | |
|     text_3 = "Russ Cochran captured his first major title with his son as caddie."
 | |
|     dict_3 = {(0, 12): {"Q7381115": 0.0, "Q2146908": 1.0}}
 | |
|     train_data.append((text_3, {"links": dict_3}))
 | |
| 
 | |
|     text_4 = "Russ Cochran was a member of University of Kentucky's golf team."
 | |
|     dict_4 = {(0, 12): {"Q7381115": 0.0, "Q2146908": 1.0}}
 | |
|     train_data.append((text_4, {"links": dict_4}))
 | |
| 
 | |
|     return train_data
 | |
| 
 | |
| 
 | |
| # training data
 | |
| TRAIN_DATA = sample_train_data()
 | |
| 
 | |
| 
 | |
| @plac.annotations(
 | |
|     kb_path=("Path to the knowledge base", "positional", None, Path),
 | |
|     vocab_path=("Path to the vocab for the kb", "positional", None, Path),
 | |
|     output_dir=("Optional output directory", "option", "o", Path),
 | |
|     n_iter=("Number of training iterations", "option", "n", int),
 | |
| )
 | |
| def main(kb_path, vocab_path=None, output_dir=None, n_iter=50):
 | |
|     """Create a blank model with the specified vocab, set up the pipeline and train the entity linker.
 | |
|     The `vocab` should be the one used during creation of the KB."""
 | |
|     vocab = Vocab().from_disk(vocab_path)
 | |
|     # create blank Language class with correct vocab
 | |
|     nlp = spacy.blank("en", vocab=vocab)
 | |
|     nlp.vocab.vectors.name = "spacy_pretrained_vectors"
 | |
|     print("Created blank 'en' model with vocab from '%s'" % vocab_path)
 | |
| 
 | |
|     # create the built-in pipeline components and add them to the pipeline
 | |
|     # nlp.create_pipe works for built-ins that are registered with spaCy
 | |
|     if "entity_linker" not in nlp.pipe_names:
 | |
|         entity_linker = nlp.create_pipe("entity_linker")
 | |
|         kb = KnowledgeBase(vocab=nlp.vocab)
 | |
|         kb.load_bulk(kb_path)
 | |
|         print("Loaded Knowledge Base from '%s'" % kb_path)
 | |
|         entity_linker.set_kb(kb)
 | |
|         nlp.add_pipe(entity_linker, last=True)
 | |
|     else:
 | |
|         entity_linker = nlp.get_pipe("entity_linker")
 | |
|         kb = entity_linker.kb
 | |
| 
 | |
|     # make sure the annotated examples correspond to known identifiers in the knowlege base
 | |
|     kb_ids = kb.get_entity_strings()
 | |
|     for text, annotation in TRAIN_DATA:
 | |
|         for offset, kb_id_dict in annotation["links"].items():
 | |
|             new_dict = {}
 | |
|             for kb_id, value in kb_id_dict.items():
 | |
|                 if kb_id in kb_ids:
 | |
|                     new_dict[kb_id] = value
 | |
|                 else:
 | |
|                     print(
 | |
|                         "Removed", kb_id, "from training because it is not in the KB."
 | |
|                     )
 | |
|             annotation["links"][offset] = new_dict
 | |
| 
 | |
|     # get names of other pipes to disable them during training
 | |
|     other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "entity_linker"]
 | |
|     with nlp.disable_pipes(*other_pipes):  # only train entity linker
 | |
|         # reset and initialize the weights randomly
 | |
|         optimizer = nlp.begin_training()
 | |
|         for itn in range(n_iter):
 | |
|             random.shuffle(TRAIN_DATA)
 | |
|             losses = {}
 | |
|             # batch up the examples using spaCy's minibatch
 | |
|             batches = minibatch(TRAIN_DATA, size=compounding(4.0, 32.0, 1.001))
 | |
|             for batch in batches:
 | |
|                 texts, annotations = zip(*batch)
 | |
|                 nlp.update(
 | |
|                     texts,  # batch of texts
 | |
|                     annotations,  # batch of annotations
 | |
|                     drop=0.2,  # dropout - make it harder to memorise data
 | |
|                     losses=losses,
 | |
|                     sgd=optimizer,
 | |
|                 )
 | |
|             print(itn, "Losses", losses)
 | |
| 
 | |
|     # test the trained model
 | |
|     _apply_model(nlp)
 | |
| 
 | |
|     # save model to output directory
 | |
|     if output_dir is not None:
 | |
|         output_dir = Path(output_dir)
 | |
|         if not output_dir.exists():
 | |
|             output_dir.mkdir()
 | |
|         nlp.to_disk(output_dir)
 | |
|         print()
 | |
|         print("Saved model to", output_dir)
 | |
| 
 | |
|         # test the saved model
 | |
|         print("Loading from", output_dir)
 | |
|         nlp2 = spacy.load(output_dir)
 | |
|         _apply_model(nlp2)
 | |
| 
 | |
| 
 | |
| def _apply_model(nlp):
 | |
|     for text, annotation in TRAIN_DATA:
 | |
|         doc = nlp.tokenizer(text)
 | |
| 
 | |
|         # set entities so the evaluation is independent of the NER step
 | |
|         # all the examples contain 'Russ Cochran' as the first two tokens in the sentence
 | |
|         rc_ent = Span(doc, 0, 2, label=PERSON)
 | |
|         doc.ents = [rc_ent]
 | |
| 
 | |
|         # apply the entity linker which will now make predictions for the 'Russ Cochran' entities
 | |
|         doc = nlp.get_pipe("entity_linker")(doc)
 | |
| 
 | |
|         print()
 | |
|         print("Entities", [(ent.text, ent.label_, ent.kb_id_) for ent in doc.ents])
 | |
|         print("Tokens", [(t.text, t.ent_type_, t.ent_kb_id_) for t in doc])
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     plac.call(main)
 | |
| 
 | |
|     # Expected output (can be shuffled):
 | |
| 
 | |
|     # Entities[('Russ Cochran', 'PERSON', 'Q7381115')]
 | |
|     # Tokens[('Russ', 'PERSON', 'Q7381115'), ('Cochran', 'PERSON', 'Q7381115'), ("his", '', ''), ('reprints', '', ''), ('include', '', ''), ('The', '', ''), ('Complete', '', ''), ('EC', '', ''), ('Library', '', ''), ('.', '', '')]
 | |
| 
 | |
|     # Entities[('Russ Cochran', 'PERSON', 'Q7381115')]
 | |
|     # Tokens[('Russ', 'PERSON', 'Q7381115'), ('Cochran', 'PERSON', 'Q7381115'), ('has', '', ''), ('been', '', ''), ('publishing', '', ''), ('comic', '', ''), ('art', '', ''), ('.', '', '')]
 | |
| 
 | |
|     # Entities[('Russ Cochran', 'PERSON', 'Q2146908')]
 | |
|     # Tokens[('Russ', 'PERSON', 'Q2146908'), ('Cochran', 'PERSON', 'Q2146908'), ('captured', '', ''), ('his', '', ''), ('first', '', ''), ('major', '', ''), ('title', '', ''), ('with', '', ''), ('his', '', ''), ('son', '', ''), ('as', '', ''), ('caddie', '', ''), ('.', '', '')]
 | |
| 
 | |
|     # Entities[('Russ Cochran', 'PERSON', 'Q2146908')]
 | |
|     # Tokens[('Russ', 'PERSON', 'Q2146908'), ('Cochran', 'PERSON', 'Q2146908'), ('was', '', ''), ('a', '', ''), ('member', '', ''), ('of', '', ''), ('University', '', ''), ('of', '', ''), ('Kentucky', '', ''), ("'s", '', ''), ('golf', '', ''), ('team', '', ''), ('.', '', '')]
 |