mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-19 14:04:12 +03:00
230 lines
7.5 KiB
Python
230 lines
7.5 KiB
Python
# coding: utf-8
|
|
from __future__ import unicode_literals
|
|
|
|
import pytest
|
|
import numpy
|
|
from spacy.attrs import IS_ALPHA, IS_DIGIT, IS_LOWER, IS_PUNCT, IS_TITLE, IS_STOP
|
|
from spacy.symbols import VERB
|
|
from spacy.vocab import Vocab
|
|
from spacy.tokens import Doc
|
|
|
|
from ..util import get_doc
|
|
|
|
|
|
@pytest.fixture
|
|
def doc(en_tokenizer):
|
|
# fmt: off
|
|
text = "This is a sentence. This is another sentence. And a third."
|
|
heads = [1, 0, 1, -2, -3, 1, 0, 1, -2, -3, 0, 1, -2, -1]
|
|
deps = ["nsubj", "ROOT", "det", "attr", "punct", "nsubj", "ROOT", "det",
|
|
"attr", "punct", "ROOT", "det", "npadvmod", "punct"]
|
|
# fmt: on
|
|
tokens = en_tokenizer(text)
|
|
return get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
|
|
|
|
|
|
def test_doc_token_api_strings(en_tokenizer):
|
|
text = "Give it back! He pleaded."
|
|
pos = ["VERB", "PRON", "PART", "PUNCT", "PRON", "VERB", "PUNCT"]
|
|
heads = [0, -1, -2, -3, 1, 0, -1]
|
|
deps = ["ROOT", "dobj", "prt", "punct", "nsubj", "ROOT", "punct"]
|
|
|
|
tokens = en_tokenizer(text)
|
|
doc = get_doc(
|
|
tokens.vocab, words=[t.text for t in tokens], pos=pos, heads=heads, deps=deps
|
|
)
|
|
assert doc[0].orth_ == "Give"
|
|
assert doc[0].text == "Give"
|
|
assert doc[0].text_with_ws == "Give "
|
|
assert doc[0].lower_ == "give"
|
|
assert doc[0].shape_ == "Xxxx"
|
|
assert doc[0].prefix_ == "G"
|
|
assert doc[0].suffix_ == "ive"
|
|
assert doc[0].pos_ == "VERB"
|
|
assert doc[0].dep_ == "ROOT"
|
|
|
|
|
|
def test_doc_token_api_flags(en_tokenizer):
|
|
text = "Give it back! He pleaded."
|
|
tokens = en_tokenizer(text)
|
|
assert tokens[0].check_flag(IS_ALPHA)
|
|
assert not tokens[0].check_flag(IS_DIGIT)
|
|
assert tokens[0].check_flag(IS_TITLE)
|
|
assert tokens[1].check_flag(IS_LOWER)
|
|
assert tokens[3].check_flag(IS_PUNCT)
|
|
assert tokens[2].check_flag(IS_STOP)
|
|
assert not tokens[5].check_flag(IS_STOP)
|
|
# TODO: Test more of these, esp. if a bug is found
|
|
|
|
|
|
@pytest.mark.parametrize("text", ["Give it back! He pleaded."])
|
|
def test_doc_token_api_prob_inherited_from_vocab(en_tokenizer, text):
|
|
word = text.split()[0]
|
|
en_tokenizer.vocab[word].prob = -1
|
|
tokens = en_tokenizer(text)
|
|
assert tokens[0].prob != 0
|
|
|
|
|
|
@pytest.mark.parametrize("text", ["one two"])
|
|
def test_doc_token_api_str_builtin(en_tokenizer, text):
|
|
tokens = en_tokenizer(text)
|
|
assert str(tokens[0]) == text.split(" ")[0]
|
|
assert str(tokens[1]) == text.split(" ")[1]
|
|
|
|
|
|
def test_doc_token_api_is_properties(en_vocab):
|
|
doc = Doc(en_vocab, words=["Hi", ",", "my", "email", "is", "test@me.com"])
|
|
assert doc[0].is_title
|
|
assert doc[0].is_alpha
|
|
assert not doc[0].is_digit
|
|
assert doc[1].is_punct
|
|
assert doc[3].is_ascii
|
|
assert not doc[3].like_url
|
|
assert doc[4].is_lower
|
|
assert doc[5].like_email
|
|
|
|
|
|
def test_doc_token_api_vectors():
|
|
vocab = Vocab()
|
|
vocab.reset_vectors(width=2)
|
|
vocab.set_vector("apples", vector=numpy.asarray([0.0, 2.0], dtype="f"))
|
|
vocab.set_vector("oranges", vector=numpy.asarray([0.0, 1.0], dtype="f"))
|
|
doc = Doc(vocab, words=["apples", "oranges", "oov"])
|
|
assert doc.has_vector
|
|
assert doc[0].has_vector
|
|
assert doc[1].has_vector
|
|
assert not doc[2].has_vector
|
|
apples_norm = (0 * 0 + 2 * 2) ** 0.5
|
|
oranges_norm = (0 * 0 + 1 * 1) ** 0.5
|
|
cosine = ((0 * 0) + (2 * 1)) / (apples_norm * oranges_norm)
|
|
assert doc[0].similarity(doc[1]) == cosine
|
|
|
|
|
|
def test_doc_token_api_ancestors(en_tokenizer):
|
|
# the structure of this sentence depends on the English annotation scheme
|
|
text = "Yesterday I saw a dog that barked loudly."
|
|
heads = [2, 1, 0, 1, -2, 1, -2, -1, -6]
|
|
tokens = en_tokenizer(text)
|
|
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
|
|
assert [t.text for t in doc[6].ancestors] == ["dog", "saw"]
|
|
assert [t.text for t in doc[1].ancestors] == ["saw"]
|
|
assert [t.text for t in doc[2].ancestors] == []
|
|
|
|
assert doc[2].is_ancestor(doc[7])
|
|
assert not doc[6].is_ancestor(doc[2])
|
|
|
|
|
|
def test_doc_token_api_head_setter(en_tokenizer):
|
|
# the structure of this sentence depends on the English annotation scheme
|
|
text = "Yesterday I saw a dog that barked loudly."
|
|
heads = [2, 1, 0, 1, -2, 1, -2, -1, -6]
|
|
tokens = en_tokenizer(text)
|
|
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
|
|
|
|
assert doc[6].n_lefts == 1
|
|
assert doc[6].n_rights == 1
|
|
assert doc[6].left_edge.i == 5
|
|
assert doc[6].right_edge.i == 7
|
|
|
|
assert doc[4].n_lefts == 1
|
|
assert doc[4].n_rights == 1
|
|
assert doc[4].left_edge.i == 3
|
|
assert doc[4].right_edge.i == 7
|
|
|
|
assert doc[3].n_lefts == 0
|
|
assert doc[3].n_rights == 0
|
|
assert doc[3].left_edge.i == 3
|
|
assert doc[3].right_edge.i == 3
|
|
|
|
assert doc[2].left_edge.i == 0
|
|
assert doc[2].right_edge.i == 8
|
|
|
|
doc[6].head = doc[3]
|
|
|
|
assert doc[6].n_lefts == 1
|
|
assert doc[6].n_rights == 1
|
|
assert doc[6].left_edge.i == 5
|
|
assert doc[6].right_edge.i == 7
|
|
|
|
assert doc[3].n_lefts == 0
|
|
assert doc[3].n_rights == 1
|
|
assert doc[3].left_edge.i == 3
|
|
assert doc[3].right_edge.i == 7
|
|
|
|
assert doc[4].n_lefts == 1
|
|
assert doc[4].n_rights == 0
|
|
assert doc[4].left_edge.i == 3
|
|
assert doc[4].right_edge.i == 7
|
|
|
|
assert doc[2].left_edge.i == 0
|
|
assert doc[2].right_edge.i == 8
|
|
|
|
doc[0].head = doc[5]
|
|
|
|
assert doc[5].left_edge.i == 0
|
|
assert doc[6].left_edge.i == 0
|
|
assert doc[3].left_edge.i == 0
|
|
assert doc[4].left_edge.i == 0
|
|
assert doc[2].left_edge.i == 0
|
|
|
|
|
|
def test_is_sent_start(en_tokenizer):
|
|
doc = en_tokenizer("This is a sentence. This is another.")
|
|
assert doc[5].is_sent_start is None
|
|
doc[5].is_sent_start = True
|
|
assert doc[5].is_sent_start is True
|
|
doc.is_parsed = True
|
|
assert len(list(doc.sents)) == 2
|
|
|
|
|
|
def test_set_pos():
|
|
doc = Doc(Vocab(), words=["hello", "world"])
|
|
doc[0].pos_ = "NOUN"
|
|
assert doc[0].pos_ == "NOUN"
|
|
doc[1].pos = VERB
|
|
assert doc[1].pos_ == "VERB"
|
|
|
|
|
|
def test_tokens_sent(doc):
|
|
"""Test token.sent property"""
|
|
assert len(list(doc.sents)) == 3
|
|
assert doc[1].sent.text == "This is a sentence ."
|
|
assert doc[7].sent.text == "This is another sentence ."
|
|
assert doc[1].sent.root.left_edge.text == "This"
|
|
assert doc[7].sent.root.left_edge.text == "This"
|
|
|
|
|
|
def test_token0_has_sent_start_true():
|
|
doc = Doc(Vocab(), words=["hello", "world"])
|
|
assert doc[0].is_sent_start is True
|
|
assert doc[1].is_sent_start is None
|
|
assert not doc.is_sentenced
|
|
|
|
|
|
def test_token_api_conjuncts_chain(en_vocab):
|
|
words = "The boy and the girl and the man went .".split()
|
|
heads = [1, 7, -1, 1, -3, -1, 1, -3, 0, -1]
|
|
deps = ["det", "nsubj", "cc", "det", "conj", "cc", "det", "conj", "ROOT", "punct"]
|
|
doc = get_doc(en_vocab, words=words, heads=heads, deps=deps)
|
|
assert [w.text for w in doc[1].conjuncts] == ["girl", "man"]
|
|
assert [w.text for w in doc[4].conjuncts] == ["boy", "man"]
|
|
assert [w.text for w in doc[7].conjuncts] == ["boy", "girl"]
|
|
|
|
|
|
def test_token_api_conjuncts_simple(en_vocab):
|
|
words = "They came and went .".split()
|
|
heads = [1, 0, -1, -2, -1]
|
|
deps = ["nsubj", "ROOT", "cc", "conj"]
|
|
doc = get_doc(en_vocab, words=words, heads=heads, deps=deps)
|
|
assert [w.text for w in doc[1].conjuncts] == ["went"]
|
|
assert [w.text for w in doc[3].conjuncts] == ["came"]
|
|
|
|
|
|
def test_token_api_non_conjuncts(en_vocab):
|
|
words = "They came .".split()
|
|
heads = [1, 0, -1]
|
|
deps = ["nsubj", "ROOT", "punct"]
|
|
doc = get_doc(en_vocab, words=words, heads=heads, deps=deps)
|
|
assert [w.text for w in doc[0].conjuncts] == []
|
|
assert [w.text for w in doc[1].conjuncts] == []
|