mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-25 00:34:20 +03:00
fdb8815ef5
* `MorphAnalysis.get` returns only the field values * Move `_normalize_props` inside `Morphology` as `Morphology.normalize_attrs` and simplify * Simplify POS field detection/conversion * Convert all non-POS features to strings * `Morphology` returns an empty string for a missing morph to align with the FEATS string returned for an existing morph * Remove unused `list_to_feats`
341 lines
14 KiB
Cython
341 lines
14 KiB
Cython
# cython: infer_types
|
|
from libc.string cimport memset
|
|
|
|
import srsly
|
|
from collections import Counter
|
|
import numpy
|
|
import warnings
|
|
|
|
from .attrs cimport POS, IS_SPACE
|
|
from .parts_of_speech cimport SPACE
|
|
from .lexeme cimport Lexeme
|
|
|
|
from .strings import get_string_id
|
|
from .attrs import LEMMA, intify_attrs
|
|
from .parts_of_speech import IDS as POS_IDS
|
|
from .errors import Errors, Warnings
|
|
from .util import ensure_path
|
|
from . import symbols
|
|
|
|
|
|
cdef class Morphology:
|
|
"""Store the possible morphological analyses for a language, and index them
|
|
by hash.
|
|
|
|
To save space on each token, tokens only know the hash of their
|
|
morphological analysis, so queries of morphological attributes are delegated
|
|
to this class.
|
|
"""
|
|
FEATURE_SEP = "|"
|
|
FIELD_SEP = "="
|
|
VALUE_SEP = ","
|
|
EMPTY_MORPH = "_" # not an empty string so that the PreshMap key is not 0
|
|
|
|
def __init__(self, StringStore strings, tag_map, lemmatizer, exc=None):
|
|
self.mem = Pool()
|
|
self.strings = strings
|
|
self.tags = PreshMap()
|
|
self.load_tag_map(tag_map)
|
|
self.lemmatizer = lemmatizer
|
|
|
|
self._cache = PreshMapArray(self.n_tags)
|
|
self._exc = {}
|
|
if exc is not None:
|
|
self.load_morph_exceptions(exc)
|
|
|
|
def load_tag_map(self, tag_map):
|
|
self.tag_map = {}
|
|
self.reverse_index = {}
|
|
# Add special space symbol. We prefix with underscore, to make sure it
|
|
# always sorts to the end.
|
|
if '_SP' in tag_map:
|
|
space_attrs = tag_map.get('_SP')
|
|
else:
|
|
space_attrs = tag_map.get('SP', {POS: SPACE})
|
|
if '_SP' not in tag_map:
|
|
self.strings.add('_SP')
|
|
tag_map = dict(tag_map)
|
|
tag_map['_SP'] = space_attrs
|
|
for i, (tag_str, attrs) in enumerate(sorted(tag_map.items())):
|
|
attrs = self.normalize_attrs(attrs)
|
|
self.add(attrs)
|
|
self.tag_map[tag_str] = dict(attrs)
|
|
self.reverse_index[self.strings.add(tag_str)] = i
|
|
self.tag_names = tuple(sorted(self.tag_map.keys()))
|
|
self.n_tags = len(self.tag_map)
|
|
self._cache = PreshMapArray(self.n_tags)
|
|
|
|
def __reduce__(self):
|
|
return (Morphology, (self.strings, self.tag_map, self.lemmatizer,
|
|
self.exc), None, None)
|
|
|
|
def add(self, features):
|
|
"""Insert a morphological analysis in the morphology table, if not
|
|
already present. The morphological analysis may be provided in the UD
|
|
FEATS format as a string or in the tag map dict format.
|
|
Returns the hash of the new analysis.
|
|
"""
|
|
cdef MorphAnalysisC* tag_ptr
|
|
if isinstance(features, str):
|
|
if features == self.EMPTY_MORPH:
|
|
features = ""
|
|
tag_ptr = <MorphAnalysisC*>self.tags.get(<hash_t>self.strings[features])
|
|
if tag_ptr != NULL:
|
|
return tag_ptr.key
|
|
features = self.feats_to_dict(features)
|
|
if not isinstance(features, dict):
|
|
warnings.warn(Warnings.W100.format(feature=features))
|
|
features = {}
|
|
string_features = {self.strings.as_string(field): self.strings.as_string(values) for field, values in features.items()}
|
|
# intified ("Field", "Field=Value") pairs
|
|
field_feature_pairs = []
|
|
for field in sorted(string_features):
|
|
values = string_features[field]
|
|
for value in values.split(self.VALUE_SEP):
|
|
field_feature_pairs.append((
|
|
self.strings.add(field),
|
|
self.strings.add(field + self.FIELD_SEP + value),
|
|
))
|
|
cdef MorphAnalysisC tag = self.create_morph_tag(field_feature_pairs)
|
|
# the hash key for the tag is either the hash of the normalized UFEATS
|
|
# string or the hash of an empty placeholder (using the empty string
|
|
# would give a hash key of 0, which is not good for PreshMap)
|
|
norm_feats_string = self.normalize_features(features)
|
|
if norm_feats_string:
|
|
tag.key = self.strings.add(norm_feats_string)
|
|
else:
|
|
tag.key = self.strings.add(self.EMPTY_MORPH)
|
|
self.insert(tag)
|
|
return tag.key
|
|
|
|
def normalize_features(self, features):
|
|
"""Create a normalized FEATS string from a features string or dict.
|
|
|
|
features (Union[dict, str]): Features as dict or UFEATS string.
|
|
RETURNS (str): Features as normalized UFEATS string.
|
|
"""
|
|
if isinstance(features, str):
|
|
features = self.feats_to_dict(features)
|
|
if not isinstance(features, dict):
|
|
warnings.warn(Warnings.W100.format(feature=features))
|
|
features = {}
|
|
features = self.normalize_attrs(features)
|
|
string_features = {self.strings.as_string(field): self.strings.as_string(values) for field, values in features.items()}
|
|
# normalized UFEATS string with sorted fields and values
|
|
norm_feats_string = self.FEATURE_SEP.join(sorted([
|
|
self.FIELD_SEP.join([field, values])
|
|
for field, values in string_features.items()
|
|
]))
|
|
return norm_feats_string or self.EMPTY_MORPH
|
|
|
|
def normalize_attrs(self, attrs):
|
|
"""Convert attrs dict so that POS is always by ID, other features are
|
|
by string. Values separated by VALUE_SEP are sorted.
|
|
"""
|
|
out = {}
|
|
attrs = dict(attrs)
|
|
for key, value in attrs.items():
|
|
# convert POS value to ID
|
|
if key == POS or (isinstance(key, str) and key.upper() == "POS"):
|
|
if isinstance(value, str) and value.upper() in POS_IDS:
|
|
value = POS_IDS[value.upper()]
|
|
elif isinstance(value, int) and value not in POS_IDS.values():
|
|
warnings.warn(Warnings.W100.format(feature={key: value}))
|
|
continue
|
|
out[POS] = value
|
|
# accept any string or ID fields and values and convert to strings
|
|
elif isinstance(key, (int, str)) and isinstance(value, (int, str)):
|
|
key = self.strings.as_string(key)
|
|
value = self.strings.as_string(value)
|
|
# sort values
|
|
if self.VALUE_SEP in value:
|
|
value = self.VALUE_SEP.join(sorted(value.split(self.VALUE_SEP)))
|
|
out[key] = value
|
|
else:
|
|
warnings.warn(Warnings.W100.format(feature={key: value}))
|
|
return out
|
|
|
|
cdef MorphAnalysisC create_morph_tag(self, field_feature_pairs) except *:
|
|
"""Creates a MorphAnalysisC from a list of intified
|
|
("Field", "Field=Value") tuples where fields with multiple values have
|
|
been split into individual tuples, e.g.:
|
|
[("Field1", "Field1=Value1"), ("Field1", "Field1=Value2"),
|
|
("Field2", "Field2=Value3")]
|
|
"""
|
|
cdef MorphAnalysisC tag
|
|
tag.length = len(field_feature_pairs)
|
|
tag.fields = <attr_t*>self.mem.alloc(tag.length, sizeof(attr_t))
|
|
tag.features = <attr_t*>self.mem.alloc(tag.length, sizeof(attr_t))
|
|
for i, (field, feature) in enumerate(field_feature_pairs):
|
|
tag.fields[i] = field
|
|
tag.features[i] = feature
|
|
return tag
|
|
|
|
cdef int insert(self, MorphAnalysisC tag) except -1:
|
|
cdef hash_t key = tag.key
|
|
if self.tags.get(key) == NULL:
|
|
tag_ptr = <MorphAnalysisC*>self.mem.alloc(1, sizeof(MorphAnalysisC))
|
|
tag_ptr[0] = tag
|
|
self.tags.set(key, <void*>tag_ptr)
|
|
|
|
def get(self, hash_t morph):
|
|
tag = <MorphAnalysisC*>self.tags.get(morph)
|
|
if tag == NULL:
|
|
return ""
|
|
else:
|
|
return self.strings[tag.key]
|
|
|
|
def lemmatize(self, const univ_pos_t univ_pos, attr_t orth, morphology):
|
|
if orth not in self.strings:
|
|
return orth
|
|
cdef unicode py_string = self.strings[orth]
|
|
if self.lemmatizer is None:
|
|
return self.strings.add(py_string.lower())
|
|
cdef list lemma_strings
|
|
cdef unicode lemma_string
|
|
# Normalize features into a dict keyed by the field, to make life easier
|
|
# for the lemmatizer. Handles string-to-int conversion too.
|
|
string_feats = {}
|
|
for key, value in morphology.items():
|
|
if value is True:
|
|
name, value = self.strings.as_string(key).split('_', 1)
|
|
string_feats[name] = value
|
|
else:
|
|
string_feats[self.strings.as_string(key)] = self.strings.as_string(value)
|
|
lemma_strings = self.lemmatizer(py_string, univ_pos, string_feats)
|
|
lemma_string = lemma_strings[0]
|
|
lemma = self.strings.add(lemma_string)
|
|
return lemma
|
|
|
|
def add_special_case(self, unicode tag_str, unicode orth_str, attrs,
|
|
force=False):
|
|
"""Add a special-case rule to the morphological analyser. Tokens whose
|
|
tag and orth match the rule will receive the specified properties.
|
|
|
|
tag (str): The part-of-speech tag to key the exception.
|
|
orth (str): The word-form to key the exception.
|
|
"""
|
|
attrs = dict(attrs)
|
|
attrs = self.normalize_attrs(attrs)
|
|
self.add(attrs)
|
|
attrs = intify_attrs(attrs, self.strings, _do_deprecated=True)
|
|
self._exc[(tag_str, self.strings.add(orth_str))] = attrs
|
|
|
|
cdef int assign_untagged(self, TokenC* token) except -1:
|
|
"""Set morphological attributes on a token without a POS tag. Uses
|
|
the lemmatizer's lookup() method, which looks up the string in the
|
|
table provided by the language data as lemma_lookup (if available).
|
|
"""
|
|
if token.lemma == 0:
|
|
orth_str = self.strings[token.lex.orth]
|
|
lemma = self.lemmatizer.lookup(orth_str, orth=token.lex.orth)
|
|
token.lemma = self.strings.add(lemma)
|
|
|
|
cdef int assign_tag(self, TokenC* token, tag_str) except -1:
|
|
cdef attr_t tag = self.strings.as_int(tag_str)
|
|
if tag in self.reverse_index:
|
|
tag_id = self.reverse_index[tag]
|
|
self.assign_tag_id(token, tag_id)
|
|
else:
|
|
token.tag = tag
|
|
|
|
cdef int assign_tag_id(self, TokenC* token, int tag_id) except -1:
|
|
if tag_id > self.n_tags:
|
|
raise ValueError(Errors.E014.format(tag=tag_id))
|
|
# Ensure spaces get tagged as space.
|
|
# It seems pretty arbitrary to put this logic here, but there's really
|
|
# nowhere better. I guess the justification is that this is where the
|
|
# specific word and the tag interact. Still, we should have a better
|
|
# way to enforce this rule, or figure out why the statistical model fails.
|
|
# Related to Issue #220
|
|
if Lexeme.c_check_flag(token.lex, IS_SPACE):
|
|
tag_id = self.reverse_index[self.strings.add('_SP')]
|
|
tag_str = self.tag_names[tag_id]
|
|
features = dict(self.tag_map.get(tag_str, {}))
|
|
if features:
|
|
pos = self.strings.as_int(features.pop(POS))
|
|
else:
|
|
pos = 0
|
|
cdef attr_t lemma = <attr_t>self._cache.get(tag_id, token.lex.orth)
|
|
if lemma == 0:
|
|
# Ugh, self.lemmatize has opposite arg order from self.lemmatizer :(
|
|
lemma = self.lemmatize(pos, token.lex.orth, features)
|
|
self._cache.set(tag_id, token.lex.orth, <void*>lemma)
|
|
token.lemma = lemma
|
|
token.pos = <univ_pos_t>pos
|
|
token.tag = self.strings[tag_str]
|
|
token.morph = self.add(features)
|
|
if (self.tag_names[tag_id], token.lex.orth) in self._exc:
|
|
self._assign_tag_from_exceptions(token, tag_id)
|
|
|
|
cdef int _assign_tag_from_exceptions(self, TokenC* token, int tag_id) except -1:
|
|
key = (self.tag_names[tag_id], token.lex.orth)
|
|
cdef dict attrs
|
|
attrs = self._exc[key]
|
|
token.pos = attrs.get(POS, token.pos)
|
|
token.lemma = attrs.get(LEMMA, token.lemma)
|
|
|
|
def load_morph_exceptions(self, dict morph_rules):
|
|
self._exc = {}
|
|
# Map (form, pos) to attributes
|
|
for tag, exc in morph_rules.items():
|
|
for orth, attrs in exc.items():
|
|
attrs = self.normalize_attrs(attrs)
|
|
self.add_special_case(self.strings.as_string(tag), self.strings.as_string(orth), attrs)
|
|
|
|
@property
|
|
def exc(self):
|
|
# generate the serializable exc in the MORPH_RULES format from the
|
|
# internal tuple-key format
|
|
morph_rules = {}
|
|
for (tag, orth) in sorted(self._exc):
|
|
if not tag in morph_rules:
|
|
morph_rules[tag] = {}
|
|
morph_rules[tag][self.strings[orth]] = self._exc[(tag, orth)]
|
|
return morph_rules
|
|
|
|
@staticmethod
|
|
def feats_to_dict(feats):
|
|
if not feats or feats == Morphology.EMPTY_MORPH:
|
|
return {}
|
|
return {field: Morphology.VALUE_SEP.join(sorted(values.split(Morphology.VALUE_SEP))) for field, values in
|
|
[feat.split(Morphology.FIELD_SEP) for feat in feats.split(Morphology.FEATURE_SEP)]}
|
|
|
|
@staticmethod
|
|
def dict_to_feats(feats_dict):
|
|
if len(feats_dict) == 0:
|
|
return ""
|
|
return Morphology.FEATURE_SEP.join(sorted([Morphology.FIELD_SEP.join([field, Morphology.VALUE_SEP.join(sorted(values.split(Morphology.VALUE_SEP)))]) for field, values in feats_dict.items()]))
|
|
|
|
|
|
cdef int check_feature(const MorphAnalysisC* morph, attr_t feature) nogil:
|
|
cdef int i
|
|
for i in range(morph.length):
|
|
if morph.features[i] == feature:
|
|
return True
|
|
return False
|
|
|
|
|
|
cdef list list_features(const MorphAnalysisC* morph):
|
|
cdef int i
|
|
features = []
|
|
for i in range(morph.length):
|
|
features.append(morph.features[i])
|
|
return features
|
|
|
|
|
|
cdef np.ndarray get_by_field(const MorphAnalysisC* morph, attr_t field):
|
|
cdef np.ndarray results = numpy.zeros((morph.length,), dtype="uint64")
|
|
n = get_n_by_field(<uint64_t*>results.data, morph, field)
|
|
return results[:n]
|
|
|
|
|
|
cdef int get_n_by_field(attr_t* results, const MorphAnalysisC* morph, attr_t field) nogil:
|
|
cdef int n_results = 0
|
|
cdef int i
|
|
for i in range(morph.length):
|
|
if morph.fields[i] == field:
|
|
results[n_results] = morph.features[i]
|
|
n_results += 1
|
|
return n_results
|