spaCy/spacy/pos.pyx
Matthew Honnibal 711ed0f636 * Whitespace
2014-11-02 14:22:32 +11:00

223 lines
4.7 KiB
Cython

# cython: profile=True
from os import path
import os
import shutil
import ujson
import random
import codecs
import gzip
import cython
from libc.stdint cimport uint32_t
from thinc.weights cimport arg_max
from thinc.features import NonZeroConjFeat
from thinc.features import ConjFeat
from .lexeme cimport *
from .lang cimport Lexicon
NULL_TAG = 0
cdef class Tagger:
tags = {'NULL': NULL_TAG}
def __init__(self, model_dir):
self.mem = Pool()
tags_loc = path.join(model_dir, 'postags.json')
if path.exists(tags_loc):
with open(tags_loc) as file_:
Tagger.tags.update(ujson.load(file_))
self.model = LinearModel(len(self.tags), self.extractor.n)
if path.exists(path.join(model_dir, 'model')):
self.model.load(path.join(model_dir, 'model'))
self.extractor = Extractor(TEMPLATES, [ConjFeat for _ in TEMPLATES])
self._atoms = <atom_t*>self.mem.alloc(CONTEXT_SIZE, sizeof(atom_t))
self._feats = <feat_t*>self.mem.alloc(self.extractor.n+1, sizeof(feat_t))
self._values = <weight_t*>self.mem.alloc(self.extractor.n+1, sizeof(weight_t))
self._scores = <weight_t*>self.mem.alloc(len(self.tags), sizeof(weight_t))
self._guess = NULL_TAG
cpdef class_t predict(self, int i, Tokens tokens, class_t prev, class_t prev_prev) except 0:
get_atoms(self._atoms, tokens.lex[i-2], tokens.lex[i-1], tokens.lex[i],
tokens.lex[i+1], tokens.lex[i+2], prev, prev_prev)
self.extractor.extract(self._feats, self._values, self._atoms, NULL)
self._guess = self.model.score(self._scores, self._feats, self._values)
return self._guess
cpdef bint tell_answer(self, class_t gold) except *:
cdef class_t guess = self._guess
if gold == guess or gold == NULL_TAG:
self.model.update({})
return 0
counts = {guess: {}, gold: {}}
self.extractor.count(counts[gold], self._feats, 1)
self.extractor.count(counts[guess], self._feats, -1)
self.model.update(counts)
@classmethod
def encode_pos(cls, tag):
if tag not in cls.tags:
cls.tags[tag] = len(cls.tags)
return cls.tags[tag]
@cython.boundscheck(False)
def count_tags(Tagger tagger, Tokens tokens, uint32_t[:, :] tag_counts):
cdef class_t prev_prev, prev, tag
prev = tagger.tags['EOL']; prev_prev = tagger.tags['EOL']
cdef int i
cdef id_t token
for i in range(tokens.length):
tag = tagger.predict(i, tokens, prev, prev_prev)
prev_prev = prev
prev = tag
token = tokens.lex[i].id
if token < tag_counts.shape[0]:
tag_counts[token, tag] += 1
cpdef enum:
P2i
P2c
P2w
P2shape
P2pref
P2suff
P2oft_title
P2oft_upper
P2pos
P2url
P2num
P1i
P1c
P1w
P1shape
P1pre
P1suff
P1oft_title
P1oft_upper
P1pos
P1url
P1num
N0i
N0c
N0w
N0shape
N0pref
N0suff
N0oft_title
N0oft_upper
N0pos
N0url
N0num
N1i
N1c
N1w
N1shape
N1pref
N1suff
N1oft_title
N1oft_upper
N1pos
N1url
N1num
N2i
N2c
N2w
N2shape
N2pref
N2suff
N2oft_title
N2oft_upper
N2pos
N2url
N2num
P2t
P1t
CONTEXT_SIZE
cdef int get_atoms(atom_t* atoms, Lexeme* p2, Lexeme* p1, Lexeme* n0, Lexeme* n1,
Lexeme* n2, class_t prev_tag, class_t prev_prev_tag) except -1:
_fill_token(&atoms[P2i], p2)
_fill_token(&atoms[P1i], p1)
_fill_token(&atoms[N0i], n0)
_fill_token(&atoms[N1i], n1)
_fill_token(&atoms[N2i], n2)
atoms[P1t] = prev_tag
atoms[P2t] = prev_prev_tag
cdef inline void _fill_token(atom_t* atoms, Lexeme* lex) nogil:
atoms[0] = lex.sic
atoms[1] = lex.cluster
atoms[2] = lex.norm
atoms[3] = lex.shape
atoms[4] = lex.prefix
atoms[5] = lex.suffix
atoms[6] = lex.flags & (1 << OFT_TITLE)
atoms[7] = lex.flags & (1 << OFT_UPPER)
atoms[8] = lex.postype
atoms[9] = lex.flags & (1 << LIKE_URL)
atoms[10] = lex.flags & (1 << LIKE_NUMBER)
TEMPLATES = (
(N0i,),
(N0w,),
(N0suff,),
(N0pref,),
(P1t,),
(P2t,),
(P1t, P2t),
(P1t, N0w),
(P1w,),
(P1suff,),
(P2w,),
(N1w,),
(N1suff,),
(N2w,),
(N0shape,),
(N0c,),
(N1c,),
(N2c,),
(P1c,),
(P2c,),
(N0oft_upper,),
(N0oft_title,),
(P1t, N1w),
(P1t, P2t, N1w),
(P1w, P2w, N1w),
(P2w, N1w, N2w),
(N0pos,),
(N0w, N1pos),
(N0w, N1pos, N2pos),
(P1t, N0pos),
(P2t, P1t, N0pos),
(P2url,),
(P1url,),
(N0url,),
(N1url,),
(N2url,),
(P2num,),
(P1num,),
(N0num,),
(N1num,),
(N2num,),
)