mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			94 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			94 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# coding: utf8
 | 
						|
from __future__ import unicode_literals, division, print_function
 | 
						|
 | 
						|
import plac
 | 
						|
import json
 | 
						|
from collections import defaultdict
 | 
						|
import cytoolz
 | 
						|
from pathlib import Path
 | 
						|
import dill
 | 
						|
import tqdm
 | 
						|
from thinc.neural._classes.model import Model
 | 
						|
from thinc.neural.optimizers import linear_decay
 | 
						|
from timeit import default_timer as timer
 | 
						|
import random
 | 
						|
import numpy.random
 | 
						|
 | 
						|
from ..tokens.doc import Doc
 | 
						|
from ..scorer import Scorer
 | 
						|
from ..gold import GoldParse, merge_sents
 | 
						|
from ..gold import GoldCorpus, minibatch
 | 
						|
from ..util import prints
 | 
						|
from .. import util
 | 
						|
from .. import about
 | 
						|
from .. import displacy
 | 
						|
from ..compat import json_dumps
 | 
						|
 | 
						|
random.seed(0)
 | 
						|
numpy.random.seed(0)
 | 
						|
 | 
						|
 | 
						|
@plac.annotations(
 | 
						|
    model=("Model name or path", "positional", None, str),
 | 
						|
    data_path=("Location of JSON-formatted evaluation data", "positional", None, str),
 | 
						|
    gold_preproc=("Use gold preprocessing", "flag", "G", bool),
 | 
						|
)
 | 
						|
def evaluate(cmd, model, data_path, gold_preproc=False):
 | 
						|
    """
 | 
						|
    Train a model. Expects data in spaCy's JSON format.
 | 
						|
    """
 | 
						|
    util.set_env_log(True)
 | 
						|
    data_path = util.ensure_path(data_path)
 | 
						|
    if not data_path.exists():
 | 
						|
        prints(data_path, title="Evaluation data not found", exits=1)
 | 
						|
    corpus = GoldCorpus(data_path, data_path)
 | 
						|
    nlp = util.load_model(model)
 | 
						|
    scorer = nlp.evaluate(list(corpus.dev_docs(nlp, gold_preproc=gold_preproc)))
 | 
						|
    print_results(scorer)
 | 
						|
 | 
						|
 | 
						|
def _render_parses(i, to_render):
 | 
						|
    to_render[0].user_data['title'] = "Batch %d" % i
 | 
						|
    with Path('/tmp/entities.html').open('w') as file_:
 | 
						|
        html = displacy.render(to_render[:5], style='ent', page=True)
 | 
						|
        file_.write(html)
 | 
						|
    with Path('/tmp/parses.html').open('w') as file_:
 | 
						|
        html = displacy.render(to_render[:5], style='dep', page=True)
 | 
						|
        file_.write(html)
 | 
						|
 | 
						|
 | 
						|
def print_progress(itn, losses, dev_scores, wps=0.0):
 | 
						|
    scores = {}
 | 
						|
    for col in ['dep_loss', 'tag_loss', 'uas', 'tags_acc', 'token_acc',
 | 
						|
                'ents_p', 'ents_r', 'ents_f', 'wps']:
 | 
						|
        scores[col] = 0.0
 | 
						|
    scores['dep_loss'] = losses.get('parser', 0.0)
 | 
						|
    scores['ner_loss'] = losses.get('ner', 0.0)
 | 
						|
    scores['tag_loss'] = losses.get('tagger', 0.0)
 | 
						|
    scores.update(dev_scores)
 | 
						|
    scores['wps'] = wps
 | 
						|
    tpl = '\t'.join((
 | 
						|
        '{:d}',
 | 
						|
        '{dep_loss:.3f}',
 | 
						|
        '{ner_loss:.3f}',
 | 
						|
        '{uas:.3f}',
 | 
						|
        '{ents_p:.3f}',
 | 
						|
        '{ents_r:.3f}',
 | 
						|
        '{ents_f:.3f}',
 | 
						|
        '{tags_acc:.3f}',
 | 
						|
        '{token_acc:.3f}',
 | 
						|
        '{wps:.1f}'))
 | 
						|
    print(tpl.format(itn, **scores))
 | 
						|
 | 
						|
 | 
						|
def print_results(scorer):
 | 
						|
    results = {
 | 
						|
        'TOK': '%.2f' % scorer.token_acc,
 | 
						|
        'POS': '%.2f' % scorer.tags_acc,
 | 
						|
        'UAS': '%.2f' % scorer.uas,
 | 
						|
        'LAS': '%.2f' % scorer.las,
 | 
						|
        'NER P': '%.2f' % scorer.ents_p,
 | 
						|
        'NER R': '%.2f' % scorer.ents_r,
 | 
						|
        'NER F': '%.2f' % scorer.ents_f}
 | 
						|
    util.print_table(results, title="Results")
 |