mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			189 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			189 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# coding: utf8
 | 
						|
from __future__ import unicode_literals, division, print_function
 | 
						|
 | 
						|
import plac
 | 
						|
import json
 | 
						|
from collections import defaultdict
 | 
						|
import cytoolz
 | 
						|
from pathlib import Path
 | 
						|
import dill
 | 
						|
import tqdm
 | 
						|
from thinc.neural._classes.model import Model
 | 
						|
from thinc.neural.optimizers import linear_decay
 | 
						|
from timeit import default_timer as timer
 | 
						|
import random
 | 
						|
import numpy.random
 | 
						|
 | 
						|
from ..tokens.doc import Doc
 | 
						|
from ..scorer import Scorer
 | 
						|
from ..gold import GoldParse, merge_sents
 | 
						|
from ..gold import GoldCorpus, minibatch
 | 
						|
from ..util import prints
 | 
						|
from .. import util
 | 
						|
from .. import about
 | 
						|
from .. import displacy
 | 
						|
from ..compat import json_dumps
 | 
						|
 | 
						|
random.seed(0)
 | 
						|
numpy.random.seed(0)
 | 
						|
 | 
						|
 | 
						|
@plac.annotations(
 | 
						|
    lang=("model language", "positional", None, str),
 | 
						|
    output_dir=("output directory to store model in", "positional", None, str),
 | 
						|
    train_data=("location of JSON-formatted training data", "positional", None, str),
 | 
						|
    dev_data=("location of JSON-formatted development data (optional)", "positional", None, str),
 | 
						|
    n_iter=("number of iterations", "option", "n", int),
 | 
						|
    n_sents=("number of sentences", "option", "ns", int),
 | 
						|
    use_gpu=("Use GPU", "option", "g", int),
 | 
						|
    vectors=("Model to load vectors from", "option", "v"),
 | 
						|
    no_tagger=("Don't train tagger", "flag", "T", bool),
 | 
						|
    no_parser=("Don't train parser", "flag", "P", bool),
 | 
						|
    no_entities=("Don't train NER", "flag", "N", bool),
 | 
						|
    gold_preproc=("Use gold preprocessing", "flag", "G", bool),
 | 
						|
    version=("Model version", "option", "V", str),
 | 
						|
    meta_path=("Optional path to meta.json. All relevant properties will be overwritten.", "option", "m", Path)
 | 
						|
)
 | 
						|
def train(cmd, lang, output_dir, train_data, dev_data, n_iter=10, n_sents=0,
 | 
						|
          use_gpu=-1, vectors=None, no_tagger=False, no_parser=False, no_entities=False,
 | 
						|
          gold_preproc=False, version="0.0.0", meta_path=None):
 | 
						|
    """
 | 
						|
    Train a model. Expects data in spaCy's JSON format.
 | 
						|
    """
 | 
						|
    util.set_env_log(True)
 | 
						|
    n_sents = n_sents or None
 | 
						|
    output_path = util.ensure_path(output_dir)
 | 
						|
    train_path = util.ensure_path(train_data)
 | 
						|
    dev_path = util.ensure_path(dev_data)
 | 
						|
    meta_path = util.ensure_path(meta_path)
 | 
						|
    if not output_path.exists():
 | 
						|
        output_path.mkdir()
 | 
						|
    if not train_path.exists():
 | 
						|
        prints(train_path, title="Training data not found", exits=1)
 | 
						|
    if dev_path and not dev_path.exists():
 | 
						|
        prints(dev_path, title="Development data not found", exits=1)
 | 
						|
    if meta_path is not None and not meta_path.exists():
 | 
						|
        prints(meta_path, title="meta.json not found", exits=1)
 | 
						|
    meta = util.read_json(meta_path) if meta_path else {}
 | 
						|
    if not isinstance(meta, dict):
 | 
						|
        prints("Expected dict but got: {}".format(type(meta)),
 | 
						|
               title="Not a valid meta.json format", exits=1)
 | 
						|
 | 
						|
    pipeline = ['tagger', 'parser', 'ner']
 | 
						|
    if no_tagger and 'tagger' in pipeline: pipeline.remove('tagger')
 | 
						|
    if no_parser and 'parser' in pipeline: pipeline.remove('parser')
 | 
						|
    if no_entities and 'ner' in pipeline: pipeline.remove('ner')
 | 
						|
 | 
						|
    # Take dropout and batch size as generators of values -- dropout
 | 
						|
    # starts high and decays sharply, to force the optimizer to explore.
 | 
						|
    # Batch size starts at 1 and grows, so that we make updates quickly
 | 
						|
    # at the beginning of training.
 | 
						|
    dropout_rates = util.decaying(util.env_opt('dropout_from', 0.2),
 | 
						|
                                  util.env_opt('dropout_to', 0.2),
 | 
						|
                                  util.env_opt('dropout_decay', 0.0))
 | 
						|
    batch_sizes = util.compounding(util.env_opt('batch_from', 1),
 | 
						|
                                   util.env_opt('batch_to', 16),
 | 
						|
                                   util.env_opt('batch_compound', 1.001))
 | 
						|
    corpus = GoldCorpus(train_path, dev_path, limit=n_sents)
 | 
						|
    n_train_words = corpus.count_train()
 | 
						|
 | 
						|
    lang_class = util.get_lang_class(lang)
 | 
						|
    nlp = lang_class(pipeline=pipeline)
 | 
						|
    if vectors:
 | 
						|
        util.load_model(vectors, vocab=nlp.vocab)
 | 
						|
    optimizer = nlp.begin_training(lambda: corpus.train_tuples, device=use_gpu)
 | 
						|
    nlp._optimizer = None
 | 
						|
 | 
						|
    print("Itn.\tP.Loss\tN.Loss\tUAS\tNER P.\tNER R.\tNER F.\tTag %\tToken %")
 | 
						|
    try:
 | 
						|
        train_docs = corpus.train_docs(nlp, projectivize=True, noise_level=0.0,
 | 
						|
                                       gold_preproc=gold_preproc, max_length=0)
 | 
						|
        train_docs = list(train_docs)
 | 
						|
        for i in range(n_iter):
 | 
						|
            with tqdm.tqdm(total=n_train_words, leave=False) as pbar:
 | 
						|
                losses = {}
 | 
						|
                for batch in minibatch(train_docs, size=batch_sizes):
 | 
						|
                    docs, golds = zip(*batch)
 | 
						|
                    nlp.update(docs, golds, sgd=optimizer,
 | 
						|
                               drop=next(dropout_rates), losses=losses)
 | 
						|
                    pbar.update(sum(len(doc) for doc in docs))
 | 
						|
 | 
						|
            with nlp.use_params(optimizer.averages):
 | 
						|
                util.set_env_log(False)
 | 
						|
                epoch_model_path = output_path / ('model%d' % i)
 | 
						|
                nlp.to_disk(epoch_model_path)
 | 
						|
                nlp_loaded = lang_class(pipeline=pipeline)
 | 
						|
                nlp_loaded = nlp_loaded.from_disk(epoch_model_path)
 | 
						|
                scorer = nlp_loaded.evaluate(
 | 
						|
                            list(corpus.dev_docs(
 | 
						|
                                nlp_loaded,
 | 
						|
                                gold_preproc=gold_preproc)))
 | 
						|
                acc_loc =(output_path / ('model%d' % i) / 'accuracy.json')
 | 
						|
                with acc_loc.open('w') as file_:
 | 
						|
                    file_.write(json_dumps(scorer.scores))
 | 
						|
                meta_loc = output_path / ('model%d' % i) / 'meta.json'
 | 
						|
                meta['accuracy'] = scorer.scores
 | 
						|
                meta['lang'] = nlp.lang
 | 
						|
                meta['pipeline'] = pipeline
 | 
						|
                meta['spacy_version'] = '>=%s' % about.__version__
 | 
						|
                meta.setdefault('name', 'model%d' % i)
 | 
						|
                meta.setdefault('version', version)
 | 
						|
 | 
						|
                with meta_loc.open('w') as file_:
 | 
						|
                    file_.write(json_dumps(meta))
 | 
						|
                util.set_env_log(True)
 | 
						|
            print_progress(i, losses, scorer.scores)
 | 
						|
    finally:
 | 
						|
        print("Saving model...")
 | 
						|
        try:
 | 
						|
            with (output_path / 'model-final.pickle').open('wb') as file_:
 | 
						|
                with nlp.use_params(optimizer.averages):
 | 
						|
                    dill.dump(nlp, file_, -1)
 | 
						|
        except:
 | 
						|
            pass
 | 
						|
 | 
						|
def _render_parses(i, to_render):
 | 
						|
    to_render[0].user_data['title'] = "Batch %d" % i
 | 
						|
    with Path('/tmp/entities.html').open('w') as file_:
 | 
						|
        html = displacy.render(to_render[:5], style='ent', page=True)
 | 
						|
        file_.write(html)
 | 
						|
    with Path('/tmp/parses.html').open('w') as file_:
 | 
						|
        html = displacy.render(to_render[:5], style='dep', page=True)
 | 
						|
        file_.write(html)
 | 
						|
 | 
						|
 | 
						|
def print_progress(itn, losses, dev_scores, wps=0.0):
 | 
						|
    scores = {}
 | 
						|
    for col in ['dep_loss', 'tag_loss', 'uas', 'tags_acc', 'token_acc',
 | 
						|
                'ents_p', 'ents_r', 'ents_f', 'wps']:
 | 
						|
        scores[col] = 0.0
 | 
						|
    scores['dep_loss'] = losses.get('parser', 0.0)
 | 
						|
    scores['ner_loss'] = losses.get('ner', 0.0)
 | 
						|
    scores['tag_loss'] = losses.get('tagger', 0.0)
 | 
						|
    scores.update(dev_scores)
 | 
						|
    scores['wps'] = wps
 | 
						|
    tpl = '\t'.join((
 | 
						|
        '{:d}',
 | 
						|
        '{dep_loss:.3f}',
 | 
						|
        '{ner_loss:.3f}',
 | 
						|
        '{uas:.3f}',
 | 
						|
        '{ents_p:.3f}',
 | 
						|
        '{ents_r:.3f}',
 | 
						|
        '{ents_f:.3f}',
 | 
						|
        '{tags_acc:.3f}',
 | 
						|
        '{token_acc:.3f}',
 | 
						|
        '{wps:.1f}'))
 | 
						|
    print(tpl.format(itn, **scores))
 | 
						|
 | 
						|
 | 
						|
def print_results(scorer):
 | 
						|
    results = {
 | 
						|
        'TOK': '%.2f' % scorer.token_acc,
 | 
						|
        'POS': '%.2f' % scorer.tags_acc,
 | 
						|
        'UAS': '%.2f' % scorer.uas,
 | 
						|
        'LAS': '%.2f' % scorer.las,
 | 
						|
        'NER P': '%.2f' % scorer.ents_p,
 | 
						|
        'NER R': '%.2f' % scorer.ents_r,
 | 
						|
        'NER F': '%.2f' % scorer.ents_f}
 | 
						|
    util.print_table(results, title="Results")
 |