mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	* Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
		
			
				
	
	
		
			210 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
			
		
		
	
	
			210 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
# cython: infer_types=True, profile=True, binding=True
 | 
						|
from typing import Optional
 | 
						|
import srsly
 | 
						|
from thinc.api import SequenceCategoricalCrossentropy, Model, Config
 | 
						|
 | 
						|
from ..tokens.doc cimport Doc
 | 
						|
from ..vocab cimport Vocab
 | 
						|
from ..morphology cimport Morphology
 | 
						|
from ..parts_of_speech import IDS as POS_IDS
 | 
						|
from ..symbols import POS
 | 
						|
 | 
						|
from ..language import Language
 | 
						|
from ..errors import Errors
 | 
						|
from .pipe import deserialize_config
 | 
						|
from .tagger import Tagger
 | 
						|
from .. import util
 | 
						|
 | 
						|
 | 
						|
default_model_config = """
 | 
						|
[model]
 | 
						|
@architectures = "spacy.Tagger.v1"
 | 
						|
 | 
						|
[model.tok2vec]
 | 
						|
@architectures = "spacy.HashCharEmbedCNN.v1"
 | 
						|
pretrained_vectors = null
 | 
						|
width = 128
 | 
						|
depth = 4
 | 
						|
embed_size = 7000
 | 
						|
window_size = 1
 | 
						|
maxout_pieces = 3
 | 
						|
nM = 64
 | 
						|
nC = 8
 | 
						|
dropout = null
 | 
						|
"""
 | 
						|
DEFAULT_MORPH_MODEL = Config().from_str(default_model_config)["model"]
 | 
						|
 | 
						|
 | 
						|
@Language.factory(
 | 
						|
    "morphologizer",
 | 
						|
    assigns=["token.morph", "token.pos"],
 | 
						|
    default_config={"model": DEFAULT_MORPH_MODEL}
 | 
						|
)
 | 
						|
def make_morphologizer(
 | 
						|
    nlp: Language,
 | 
						|
    model: Model,
 | 
						|
    name: str,
 | 
						|
):
 | 
						|
    return Morphologizer(nlp.vocab, model, name)
 | 
						|
 | 
						|
 | 
						|
class Morphologizer(Tagger):
 | 
						|
    POS_FEAT = "POS"
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        vocab: Vocab,
 | 
						|
        model: Model,
 | 
						|
        name: str = "morphologizer",
 | 
						|
        *,
 | 
						|
        labels_morph: Optional[dict] = None,
 | 
						|
        labels_pos: Optional[dict] = None,
 | 
						|
    ):
 | 
						|
        self.vocab = vocab
 | 
						|
        self.model = model
 | 
						|
        self.name = name
 | 
						|
        self._rehearsal_model = None
 | 
						|
        # to be able to set annotations without string operations on labels,
 | 
						|
        # store mappings from morph+POS labels to token-level annotations:
 | 
						|
        # 1) labels_morph stores a mapping from morph+POS->morph
 | 
						|
        # 2) labels_pos stores a mapping from morph+POS->POS
 | 
						|
        cfg = {"labels_morph": labels_morph or {}, "labels_pos": labels_pos or {}}
 | 
						|
        self.cfg = dict(sorted(cfg.items()))
 | 
						|
        # add mappings for empty morph
 | 
						|
        self.cfg["labels_morph"][Morphology.EMPTY_MORPH] = Morphology.EMPTY_MORPH
 | 
						|
        self.cfg["labels_pos"][Morphology.EMPTY_MORPH] = POS_IDS[""]
 | 
						|
 | 
						|
    @property
 | 
						|
    def labels(self):
 | 
						|
        return tuple(self.cfg["labels_morph"].keys())
 | 
						|
 | 
						|
    def add_label(self, label):
 | 
						|
        if not isinstance(label, str):
 | 
						|
            raise ValueError(Errors.E187)
 | 
						|
        if label in self.labels:
 | 
						|
            return 0
 | 
						|
        # normalize label
 | 
						|
        norm_label = self.vocab.morphology.normalize_features(label)
 | 
						|
        # extract separate POS and morph tags
 | 
						|
        label_dict = Morphology.feats_to_dict(label)
 | 
						|
        pos = label_dict.get(self.POS_FEAT, "")
 | 
						|
        if self.POS_FEAT in label_dict:
 | 
						|
            label_dict.pop(self.POS_FEAT)
 | 
						|
        # normalize morph string and add to morphology table
 | 
						|
        norm_morph = self.vocab.strings[self.vocab.morphology.add(label_dict)]
 | 
						|
        # add label mappings
 | 
						|
        if norm_label not in self.cfg["labels_morph"]:
 | 
						|
            self.cfg["labels_morph"][norm_label] = norm_morph
 | 
						|
            self.cfg["labels_pos"][norm_label] = POS_IDS[pos]
 | 
						|
        return 1
 | 
						|
 | 
						|
    def begin_training(self, get_examples=lambda: [], pipeline=None, sgd=None):
 | 
						|
        for example in get_examples():
 | 
						|
            for i, token in enumerate(example.reference):
 | 
						|
                pos = token.pos_
 | 
						|
                morph = token.morph_
 | 
						|
                # create and add the combined morph+POS label
 | 
						|
                morph_dict = Morphology.feats_to_dict(morph)
 | 
						|
                if pos:
 | 
						|
                    morph_dict[self.POS_FEAT] = pos
 | 
						|
                norm_label = self.vocab.strings[self.vocab.morphology.add(morph_dict)]
 | 
						|
                # add label->morph and label->POS mappings
 | 
						|
                if norm_label not in self.cfg["labels_morph"]:
 | 
						|
                    self.cfg["labels_morph"][norm_label] = morph
 | 
						|
                    self.cfg["labels_pos"][norm_label] = POS_IDS[pos]
 | 
						|
        self.set_output(len(self.labels))
 | 
						|
        self.model.initialize()
 | 
						|
        util.link_vectors_to_models(self.vocab)
 | 
						|
        if sgd is None:
 | 
						|
            sgd = self.create_optimizer()
 | 
						|
        return sgd
 | 
						|
 | 
						|
    def set_annotations(self, docs, batch_tag_ids):
 | 
						|
        if isinstance(docs, Doc):
 | 
						|
            docs = [docs]
 | 
						|
        cdef Doc doc
 | 
						|
        cdef Vocab vocab = self.vocab
 | 
						|
        for i, doc in enumerate(docs):
 | 
						|
            doc_tag_ids = batch_tag_ids[i]
 | 
						|
            if hasattr(doc_tag_ids, "get"):
 | 
						|
                doc_tag_ids = doc_tag_ids.get()
 | 
						|
            for j, tag_id in enumerate(doc_tag_ids):
 | 
						|
                morph = self.labels[tag_id]
 | 
						|
                doc.c[j].morph = self.vocab.morphology.add(self.cfg["labels_morph"][morph])
 | 
						|
                doc.c[j].pos = self.cfg["labels_pos"][morph]
 | 
						|
 | 
						|
            doc.is_morphed = True
 | 
						|
 | 
						|
    def get_loss(self, examples, scores):
 | 
						|
        loss_func = SequenceCategoricalCrossentropy(names=self.labels, normalize=False)
 | 
						|
        truths = []
 | 
						|
        for eg in examples:
 | 
						|
            eg_truths = []
 | 
						|
            pos_tags = eg.get_aligned("POS", as_string=True)
 | 
						|
            morphs = eg.get_aligned("MORPH", as_string=True)
 | 
						|
            for i in range(len(morphs)):
 | 
						|
                pos = pos_tags[i]
 | 
						|
                morph = morphs[i]
 | 
						|
                # POS may align (same value for multiple tokens) when morph
 | 
						|
                # doesn't, so if either is None, treat both as None here so that
 | 
						|
                # truths doesn't end up with an unknown morph+POS combination
 | 
						|
                if pos is None or morph is None:
 | 
						|
                    pos = None
 | 
						|
                    morph = None
 | 
						|
                label_dict = Morphology.feats_to_dict(morph)
 | 
						|
                if pos:
 | 
						|
                    label_dict[self.POS_FEAT] = pos
 | 
						|
                label = self.vocab.strings[self.vocab.morphology.add(label_dict)]
 | 
						|
                eg_truths.append(label)
 | 
						|
            truths.append(eg_truths)
 | 
						|
        d_scores, loss = loss_func(scores, truths)
 | 
						|
        if self.model.ops.xp.isnan(loss):
 | 
						|
            raise ValueError("nan value when computing loss")
 | 
						|
        return float(loss), d_scores
 | 
						|
 | 
						|
    def to_bytes(self, exclude=tuple()):
 | 
						|
        serialize = {}
 | 
						|
        serialize["model"] = self.model.to_bytes
 | 
						|
        serialize["vocab"] = self.vocab.to_bytes
 | 
						|
        serialize["cfg"] = lambda: srsly.json_dumps(self.cfg)
 | 
						|
        return util.to_bytes(serialize, exclude)
 | 
						|
 | 
						|
    def from_bytes(self, bytes_data, exclude=tuple()):
 | 
						|
        def load_model(b):
 | 
						|
            try:
 | 
						|
                self.model.from_bytes(b)
 | 
						|
            except AttributeError:
 | 
						|
                raise ValueError(Errors.E149)
 | 
						|
 | 
						|
        deserialize = {
 | 
						|
            "vocab": lambda b: self.vocab.from_bytes(b),
 | 
						|
            "cfg": lambda b: self.cfg.update(srsly.json_loads(b)),
 | 
						|
            "model": lambda b: load_model(b),
 | 
						|
        }
 | 
						|
        util.from_bytes(bytes_data, deserialize, exclude)
 | 
						|
        return self
 | 
						|
 | 
						|
    def to_disk(self, path, exclude=tuple()):
 | 
						|
        serialize = {
 | 
						|
            "vocab": lambda p: self.vocab.to_disk(p),
 | 
						|
            "model": lambda p: p.open("wb").write(self.model.to_bytes()),
 | 
						|
            "cfg": lambda p: srsly.write_json(p, self.cfg),
 | 
						|
        }
 | 
						|
        util.to_disk(path, serialize, exclude)
 | 
						|
 | 
						|
    def from_disk(self, path, exclude=tuple()):
 | 
						|
        def load_model(p):
 | 
						|
            with p.open("rb") as file_:
 | 
						|
                try:
 | 
						|
                    self.model.from_bytes(file_.read())
 | 
						|
                except AttributeError:
 | 
						|
                    raise ValueError(Errors.E149)
 | 
						|
 | 
						|
        deserialize = {
 | 
						|
            "vocab": lambda p: self.vocab.from_disk(p),
 | 
						|
            "cfg": lambda p: self.cfg.update(deserialize_config(p)),
 | 
						|
            "model": load_model,
 | 
						|
        }
 | 
						|
        util.from_disk(path, deserialize, exclude)
 | 
						|
        return self
 |