mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			181 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			181 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from __future__ import unicode_literals
 | 
						|
import pytest
 | 
						|
import spacy
 | 
						|
import os
 | 
						|
 | 
						|
 | 
						|
try:
 | 
						|
    xrange
 | 
						|
except NameError:
 | 
						|
    xrange = range
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture()
 | 
						|
def token(doc):
 | 
						|
    return doc[0]
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.models
 | 
						|
def test_load_resources_and_process_text():
 | 
						|
    from spacy.en import English
 | 
						|
    nlp = English()
 | 
						|
    doc = nlp(u'Hello, world. Here are two sentences.')
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.models
 | 
						|
def test_get_tokens_and_sentences(doc):
 | 
						|
    token = doc[0]
 | 
						|
    sentence = next(doc.sents)
 | 
						|
    assert token is sentence[0]
 | 
						|
    assert sentence.text == 'Hello, world.'
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.models
 | 
						|
def test_use_integer_ids_for_any_strings(nlp, token):
 | 
						|
    hello_id = nlp.vocab.strings['Hello']
 | 
						|
    hello_str = nlp.vocab.strings[hello_id]
 | 
						|
 | 
						|
    assert token.orth  == hello_id  == 3125
 | 
						|
    assert token.orth_ == hello_str == 'Hello'
 | 
						|
 | 
						|
 | 
						|
def test_get_and_set_string_views_and_flags(nlp, token):
 | 
						|
    assert token.shape_ == 'Xxxxx'
 | 
						|
    for lexeme in nlp.vocab:
 | 
						|
        if lexeme.is_alpha:
 | 
						|
            lexeme.shape_ = 'W'
 | 
						|
        elif lexeme.is_digit:
 | 
						|
            lexeme.shape_ = 'D'
 | 
						|
        elif lexeme.is_punct:
 | 
						|
            lexeme.shape_ = 'P'
 | 
						|
        else:
 | 
						|
            lexeme.shape_ = 'M'
 | 
						|
    assert token.shape_ == 'W'
 | 
						|
 | 
						|
 | 
						|
def test_export_to_numpy_arrays(nlp, doc):
 | 
						|
    from spacy.attrs import ORTH, LIKE_URL, IS_OOV
 | 
						|
 | 
						|
    attr_ids = [ORTH, LIKE_URL, IS_OOV]
 | 
						|
    doc_array = doc.to_array(attr_ids)
 | 
						|
    assert doc_array.shape == (len(doc), len(attr_ids))
 | 
						|
    assert doc[0].orth == doc_array[0, 0]
 | 
						|
    assert doc[1].orth == doc_array[1, 0]
 | 
						|
    assert doc[0].like_url == doc_array[0, 1]
 | 
						|
    assert list(doc_array[:, 1]) == [t.like_url for t in doc]
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.models
 | 
						|
def test_word_vectors(nlp):
 | 
						|
    doc = nlp("Apples and oranges are similar. Boots and hippos aren't.")
 | 
						|
 | 
						|
    apples = doc[0]
 | 
						|
    oranges = doc[2]
 | 
						|
    boots = doc[6]
 | 
						|
    hippos = doc[8]
 | 
						|
 | 
						|
    assert apples.similarity(oranges) > boots.similarity(hippos)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.models
 | 
						|
def test_part_of_speech_tags(nlp):
 | 
						|
    from spacy.parts_of_speech import ADV
 | 
						|
 | 
						|
    def is_adverb(token):
 | 
						|
        return token.pos == spacy.parts_of_speech.ADV
 | 
						|
 | 
						|
    # These are data-specific, so no constants are provided. You have to look
 | 
						|
    # up the IDs from the StringStore.
 | 
						|
    NNS = nlp.vocab.strings['NNS']
 | 
						|
    NNPS = nlp.vocab.strings['NNPS']
 | 
						|
    def is_plural_noun(token):
 | 
						|
        return token.tag == NNS or token.tag == NNPS
 | 
						|
 | 
						|
    def print_coarse_pos(token):
 | 
						|
        print(token.pos_)
 | 
						|
 | 
						|
    def print_fine_pos(token):
 | 
						|
        print(token.tag_)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.models
 | 
						|
def test_syntactic_dependencies():
 | 
						|
    def dependency_labels_to_root(token):
 | 
						|
        '''Walk up the syntactic tree, collecting the arc labels.'''
 | 
						|
        dep_labels = []
 | 
						|
        while token.head is not token:
 | 
						|
            dep_labels.append(token.dep)
 | 
						|
            token = token.head
 | 
						|
        return dep_labels
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.models
 | 
						|
def test_named_entities():
 | 
						|
    def iter_products(docs):
 | 
						|
        for doc in docs:
 | 
						|
            for ent in doc.ents:
 | 
						|
                if ent.label_ == 'PRODUCT':
 | 
						|
                    yield ent
 | 
						|
 | 
						|
    def word_is_in_entity(word):
 | 
						|
        return word.ent_type != 0
 | 
						|
 | 
						|
    def count_parent_verb_by_person(docs):
 | 
						|
        counts = defaultdict(defaultdict(int))
 | 
						|
        for doc in docs:
 | 
						|
            for ent in doc.ents:
 | 
						|
                if ent.label_ == 'PERSON' and ent.root.head.pos == VERB:
 | 
						|
                    counts[ent.orth_][ent.root.head.lemma_] += 1
 | 
						|
        return counts
 | 
						|
 | 
						|
 | 
						|
def test_calculate_inline_mark_up_on_original_string():
 | 
						|
    def put_spans_around_tokens(doc, get_classes):
 | 
						|
        '''Given some function to compute class names, put each token in a
 | 
						|
        span element, with the appropriate classes computed.
 | 
						|
 | 
						|
        All whitespace is preserved, outside of the spans. (Yes, I know HTML
 | 
						|
        won't display it. But the point is no information is lost, so you can
 | 
						|
        calculate what you need, e.g. <br /> tags, <p> tags, etc.)
 | 
						|
        '''
 | 
						|
        output = []
 | 
						|
        template = '<span classes="{classes}">{word}</span>{space}'
 | 
						|
        for token in doc:
 | 
						|
            if token.is_space:
 | 
						|
                output.append(token.orth_)
 | 
						|
            else:
 | 
						|
                output.append(
 | 
						|
                  template.format(
 | 
						|
                    classes=' '.join(get_classes(token)),
 | 
						|
                    word=token.orth_,
 | 
						|
                    space=token.whitespace_))
 | 
						|
        string = ''.join(output)
 | 
						|
        string = string.replace('\n', '')
 | 
						|
        string = string.replace('\t', '    ')
 | 
						|
        return string
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.models
 | 
						|
def test_efficient_binary_serialization(doc):
 | 
						|
    from spacy.tokens.doc import Doc
 | 
						|
 | 
						|
    byte_string = doc.to_bytes()
 | 
						|
    open('moby_dick.bin', 'wb').write(byte_string)
 | 
						|
 | 
						|
    nlp = spacy.en.English()
 | 
						|
    for byte_string in Doc.read_bytes(open('moby_dick.bin', 'rb')):
 | 
						|
       doc = Doc(nlp.vocab)
 | 
						|
       doc.from_bytes(byte_string)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.models
 | 
						|
def test_multithreading(nlp):
 | 
						|
    texts = [u'One document.', u'...', u'Lots of documents']
 | 
						|
    # .pipe streams input, and produces streaming output
 | 
						|
    iter_texts = (texts[i % 3] for i in xrange(100000000))
 | 
						|
    for i, doc in enumerate(nlp.pipe(iter_texts, batch_size=50, n_threads=4)):
 | 
						|
        assert doc.is_parsed
 | 
						|
        if i == 100:
 | 
						|
            break
 | 
						|
 |