mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-11 04:08:09 +03:00
4bfc55b532
When calling vocab.load_vectors_from_bin_loc, ensure that missing entries are added to the vocab. Otherwise, loading vectors into an empty vocab object resulted in no vectors being added.
618 lines
23 KiB
Cython
618 lines
23 KiB
Cython
from __future__ import unicode_literals
|
|
|
|
from libc.stdio cimport fopen, fclose, fread, fwrite, FILE
|
|
from libc.string cimport memset
|
|
from libc.stdint cimport int32_t
|
|
from libc.stdint cimport uint64_t
|
|
from libc.math cimport sqrt
|
|
|
|
from pathlib import Path
|
|
import bz2
|
|
import io
|
|
import math
|
|
import ujson as json
|
|
import tempfile
|
|
|
|
from .lexeme cimport EMPTY_LEXEME
|
|
from .lexeme cimport Lexeme
|
|
from .strings cimport hash_string
|
|
from .orth cimport word_shape
|
|
from .typedefs cimport attr_t
|
|
from .cfile cimport CFile
|
|
from .lemmatizer import Lemmatizer
|
|
from .attrs import intify_attrs
|
|
from .tokens.token cimport Token
|
|
|
|
from . import attrs
|
|
from . import symbols
|
|
|
|
from cymem.cymem cimport Address
|
|
from .serialize.packer cimport Packer
|
|
from .attrs cimport PROB, LANG
|
|
from . import deprecated
|
|
from . import util
|
|
|
|
|
|
try:
|
|
import copy_reg
|
|
except ImportError:
|
|
import copyreg as copy_reg
|
|
|
|
|
|
DEF MAX_VEC_SIZE = 100000
|
|
|
|
|
|
cdef float[MAX_VEC_SIZE] EMPTY_VEC
|
|
memset(EMPTY_VEC, 0, sizeof(EMPTY_VEC))
|
|
memset(&EMPTY_LEXEME, 0, sizeof(LexemeC))
|
|
EMPTY_LEXEME.vector = EMPTY_VEC
|
|
|
|
|
|
cdef class Vocab:
|
|
'''A map container for a language's LexemeC structs.
|
|
'''
|
|
@classmethod
|
|
def load(cls, path, lex_attr_getters=None, lemmatizer=True,
|
|
tag_map=True, serializer_freqs=True, oov_prob=True, **deprecated_kwargs):
|
|
"""
|
|
Load the vocabulary from a path.
|
|
|
|
Arguments:
|
|
path (Path):
|
|
The path to load from.
|
|
lex_attr_getters (dict):
|
|
A dictionary mapping attribute IDs to functions to compute them.
|
|
Defaults to None.
|
|
lemmatizer (object):
|
|
A lemmatizer. Defaults to None.
|
|
tag_map (dict):
|
|
A dictionary mapping fine-grained tags to coarse-grained parts-of-speech,
|
|
and optionally morphological attributes.
|
|
oov_prob (float):
|
|
The default probability for out-of-vocabulary words.
|
|
Returns:
|
|
Vocab: The newly constructed vocab object.
|
|
"""
|
|
if isinstance(path, basestring):
|
|
path = Path(path)
|
|
util.check_renamed_kwargs({'get_lex_attr': 'lex_attr_getters'}, deprecated_kwargs)
|
|
if 'vectors' in deprecated_kwargs:
|
|
raise AttributeError(
|
|
"vectors argument to Vocab.load() deprecated. "
|
|
"Install vectors after loading.")
|
|
if tag_map is True and (path / 'vocab' / 'tag_map.json').exists():
|
|
with (path / 'vocab' / 'tag_map.json').open('r', encoding='utf8') as file_:
|
|
tag_map = json.load(file_)
|
|
elif tag_map is True:
|
|
tag_map = None
|
|
if lex_attr_getters is not None \
|
|
and oov_prob is True \
|
|
and (path / 'vocab' / 'oov_prob').exists():
|
|
with (path / 'vocab' / 'oov_prob').open('r', encoding='utf8') as file_:
|
|
oov_prob = float(file_.read())
|
|
lex_attr_getters[PROB] = lambda text: oov_prob
|
|
if lemmatizer is True:
|
|
lemmatizer = Lemmatizer.load(path)
|
|
if serializer_freqs is True and (path / 'vocab' / 'serializer.json').exists():
|
|
with (path / 'vocab' / 'serializer.json').open('r', encoding='utf8') as file_:
|
|
serializer_freqs = json.load(file_)
|
|
else:
|
|
serializer_freqs = None
|
|
|
|
cdef Vocab self = cls(lex_attr_getters=lex_attr_getters, tag_map=tag_map,
|
|
lemmatizer=lemmatizer, serializer_freqs=serializer_freqs)
|
|
|
|
with (path / 'vocab' / 'strings.json').open('r', encoding='utf8') as file_:
|
|
self.strings.load(file_)
|
|
self.load_lexemes(path / 'vocab' / 'lexemes.bin')
|
|
return self
|
|
|
|
def __init__(self, lex_attr_getters=None, tag_map=None, lemmatizer=None,
|
|
serializer_freqs=None, **deprecated_kwargs):
|
|
'''Create the vocabulary.
|
|
|
|
lex_attr_getters (dict):
|
|
A dictionary mapping attribute IDs to functions to compute them.
|
|
Defaults to None.
|
|
lemmatizer (object):
|
|
A lemmatizer. Defaults to None.
|
|
tag_map (dict):
|
|
A dictionary mapping fine-grained tags to coarse-grained parts-of-speech,
|
|
and optionally morphological attributes.
|
|
oov_prob (float):
|
|
The default probability for out-of-vocabulary words.
|
|
|
|
Returns:
|
|
Vocab: The newly constructed vocab object.
|
|
'''
|
|
util.check_renamed_kwargs({'get_lex_attr': 'lex_attr_getters'}, deprecated_kwargs)
|
|
|
|
lex_attr_getters = lex_attr_getters if lex_attr_getters is not None else {}
|
|
tag_map = tag_map if tag_map is not None else {}
|
|
if lemmatizer in (None, True, False):
|
|
lemmatizer = Lemmatizer({}, {}, {})
|
|
serializer_freqs = serializer_freqs if serializer_freqs is not None else {}
|
|
|
|
self.mem = Pool()
|
|
self._by_hash = PreshMap()
|
|
self._by_orth = PreshMap()
|
|
self.strings = StringStore()
|
|
# Load strings in a special order, so that we have an onset number for
|
|
# the vocabulary. This way, when words are added in order, the orth ID
|
|
# is the frequency rank of the word, plus a certain offset. The structural
|
|
# strings are loaded first, because the vocab is open-class, and these
|
|
# symbols are closed class.
|
|
# TODO: Actually this has turned out to be a pain in the ass...
|
|
# It means the data is invalidated when we add a symbol :(
|
|
# Need to rethink this.
|
|
for name in symbols.NAMES + list(sorted(tag_map.keys())):
|
|
if name:
|
|
_ = self.strings[name]
|
|
self.lex_attr_getters = lex_attr_getters
|
|
self.morphology = Morphology(self.strings, tag_map, lemmatizer)
|
|
self.serializer_freqs = serializer_freqs
|
|
|
|
self.length = 1
|
|
self._serializer = None
|
|
|
|
property serializer:
|
|
# Having the serializer live here is super messy :(
|
|
def __get__(self):
|
|
if self._serializer is None:
|
|
self._serializer = Packer(self, self.serializer_freqs)
|
|
return self._serializer
|
|
|
|
property lang:
|
|
def __get__(self):
|
|
langfunc = None
|
|
if self.lex_attr_getters:
|
|
langfunc = self.lex_attr_getters.get(LANG, None)
|
|
return langfunc('_') if langfunc else ''
|
|
|
|
def __len__(self):
|
|
"""The current number of lexemes stored."""
|
|
return self.length
|
|
|
|
def resize_vectors(self, int new_size):
|
|
'''
|
|
Set vectors_length to a new size, and allocate more memory for the Lexeme
|
|
vectors if necessary. The memory will be zeroed.
|
|
|
|
Arguments:
|
|
new_size (int): The new size of the vectors.
|
|
'''
|
|
cdef hash_t key
|
|
cdef size_t addr
|
|
if new_size > self.vectors_length:
|
|
for key, addr in self._by_hash.items():
|
|
lex = <LexemeC*>addr
|
|
lex.vector = <float*>self.mem.realloc(lex.vector,
|
|
new_size * sizeof(lex.vector[0]))
|
|
self.vectors_length = new_size
|
|
|
|
def add_flag(self, flag_getter, int flag_id=-1):
|
|
'''Set a new boolean flag to words in the vocabulary.
|
|
|
|
The flag_setter function will be called over the words currently in the
|
|
vocab, and then applied to new words as they occur. You'll then be able
|
|
to access the flag value on each token, using token.check_flag(flag_id).
|
|
|
|
See also:
|
|
Lexeme.set_flag, Lexeme.check_flag, Token.set_flag, Token.check_flag.
|
|
|
|
Arguments:
|
|
flag_getter:
|
|
A function f(unicode) -> bool, to get the flag value.
|
|
|
|
flag_id (int):
|
|
An integer between 1 and 63 (inclusive), specifying the bit at which the
|
|
flag will be stored. If -1, the lowest available bit will be
|
|
chosen.
|
|
|
|
Returns:
|
|
flag_id (int): The integer ID by which the flag value can be checked.
|
|
'''
|
|
if flag_id == -1:
|
|
for bit in range(1, 64):
|
|
if bit not in self.lex_attr_getters:
|
|
flag_id = bit
|
|
break
|
|
else:
|
|
raise ValueError(
|
|
"Cannot find empty bit for new lexical flag. All bits between "
|
|
"0 and 63 are occupied. You can replace one by specifying the "
|
|
"flag_id explicitly, e.g. nlp.vocab.add_flag(your_func, flag_id=IS_ALPHA")
|
|
elif flag_id >= 64 or flag_id < 1:
|
|
raise ValueError(
|
|
"Invalid value for flag_id: %d. Flag IDs must be between "
|
|
"1 and 63 (inclusive)" % flag_id)
|
|
for lex in self:
|
|
lex.set_flag(flag_id, flag_getter(lex.orth_))
|
|
self.lex_attr_getters[flag_id] = flag_getter
|
|
return flag_id
|
|
|
|
cdef const LexemeC* get(self, Pool mem, unicode string) except NULL:
|
|
'''Get a pointer to a LexemeC from the lexicon, creating a new Lexeme
|
|
if necessary, using memory acquired from the given pool. If the pool
|
|
is the lexicon's own memory, the lexeme is saved in the lexicon.'''
|
|
if string == u'':
|
|
return &EMPTY_LEXEME
|
|
cdef LexemeC* lex
|
|
cdef hash_t key = hash_string(string)
|
|
lex = <LexemeC*>self._by_hash.get(key)
|
|
cdef size_t addr
|
|
if lex != NULL:
|
|
if lex.orth != self.strings[string]:
|
|
raise LookupError.mismatched_strings(
|
|
lex.orth, self.strings[string], self.strings[lex.orth], string)
|
|
return lex
|
|
else:
|
|
return self._new_lexeme(mem, string)
|
|
|
|
cdef const LexemeC* get_by_orth(self, Pool mem, attr_t orth) except NULL:
|
|
'''Get a pointer to a LexemeC from the lexicon, creating a new Lexeme
|
|
if necessary, using memory acquired from the given pool. If the pool
|
|
is the lexicon's own memory, the lexeme is saved in the lexicon.'''
|
|
if orth == 0:
|
|
return &EMPTY_LEXEME
|
|
cdef LexemeC* lex
|
|
lex = <LexemeC*>self._by_orth.get(orth)
|
|
if lex != NULL:
|
|
return lex
|
|
else:
|
|
return self._new_lexeme(mem, self.strings[orth])
|
|
|
|
cdef const LexemeC* _new_lexeme(self, Pool mem, unicode string) except NULL:
|
|
cdef hash_t key
|
|
if len(string) < 3 or self.length < 10000:
|
|
mem = self.mem
|
|
cdef bint is_oov = mem is not self.mem
|
|
lex = <LexemeC*>mem.alloc(sizeof(LexemeC), 1)
|
|
lex.orth = self.strings[string]
|
|
lex.length = len(string)
|
|
lex.id = self.length
|
|
lex.vector = <float*>mem.alloc(self.vectors_length, sizeof(float))
|
|
if self.lex_attr_getters is not None:
|
|
for attr, func in self.lex_attr_getters.items():
|
|
value = func(string)
|
|
if isinstance(value, unicode):
|
|
value = self.strings[value]
|
|
if attr == PROB:
|
|
lex.prob = value
|
|
elif value is not None:
|
|
Lexeme.set_struct_attr(lex, attr, value)
|
|
if is_oov:
|
|
lex.id = 0
|
|
else:
|
|
key = hash_string(string)
|
|
self._add_lex_to_vocab(key, lex)
|
|
assert lex != NULL, string
|
|
return lex
|
|
|
|
cdef int _add_lex_to_vocab(self, hash_t key, const LexemeC* lex) except -1:
|
|
self._by_hash.set(key, <void*>lex)
|
|
self._by_orth.set(lex.orth, <void*>lex)
|
|
self.length += 1
|
|
|
|
def __contains__(self, unicode string):
|
|
'''Check whether the string has an entry in the vocabulary.
|
|
|
|
Arguments:
|
|
string (unicode): The ID string.
|
|
|
|
Returns:
|
|
bool Whether the string has an entry in the vocabulary.
|
|
'''
|
|
key = hash_string(string)
|
|
lex = self._by_hash.get(key)
|
|
return True if lex is not NULL else False
|
|
|
|
def __iter__(self):
|
|
'''Iterate over the lexemes in the vocabulary.
|
|
|
|
Yields: Lexeme An entry in the vocabulary.
|
|
'''
|
|
cdef attr_t orth
|
|
cdef size_t addr
|
|
for orth, addr in self._by_orth.items():
|
|
yield Lexeme(self, orth)
|
|
|
|
def __getitem__(self, id_or_string):
|
|
'''Retrieve a lexeme, given an int ID or a unicode string. If a previously
|
|
unseen unicode string is given, a new lexeme is created and stored.
|
|
|
|
Arguments:
|
|
id_or_string (int or unicode):
|
|
The integer ID of a word, or its unicode string.
|
|
|
|
If an int >= Lexicon.size, IndexError is raised. If id_or_string
|
|
is neither an int nor a unicode string, ValueError is raised.
|
|
|
|
Returns:
|
|
lexeme (Lexeme): The lexeme indicated by the given ID.
|
|
'''
|
|
cdef attr_t orth
|
|
if type(id_or_string) == unicode:
|
|
orth = self.strings[id_or_string]
|
|
else:
|
|
orth = id_or_string
|
|
return Lexeme(self, orth)
|
|
|
|
cdef const TokenC* make_fused_token(self, substrings) except NULL:
|
|
cdef int i
|
|
tokens = <TokenC*>self.mem.alloc(len(substrings) + 1, sizeof(TokenC))
|
|
for i, props in enumerate(substrings):
|
|
props = intify_attrs(props, strings_map=self.strings, _do_deprecated=True)
|
|
token = &tokens[i]
|
|
# Set the special tokens up to have arbitrary attributes
|
|
token.lex = <LexemeC*>self.get_by_orth(self.mem, props[attrs.ORTH])
|
|
if attrs.TAG in props:
|
|
self.morphology.assign_tag(token, props[attrs.TAG])
|
|
for attr_id, value in props.items():
|
|
Token.set_struct_attr(token, attr_id, value)
|
|
return tokens
|
|
|
|
def dump(self, loc):
|
|
"""Save the lexemes binary data to the given location.
|
|
|
|
Arguments:
|
|
loc (Path): The path to save to.
|
|
"""
|
|
if hasattr(loc, 'as_posix'):
|
|
loc = loc.as_posix()
|
|
cdef bytes bytes_loc = loc.encode('utf8') if type(loc) == unicode else loc
|
|
|
|
cdef CFile fp = CFile(bytes_loc, 'wb')
|
|
cdef size_t st
|
|
cdef size_t addr
|
|
cdef hash_t key
|
|
for key, addr in self._by_hash.items():
|
|
lexeme = <LexemeC*>addr
|
|
fp.write_from(&lexeme.orth, sizeof(lexeme.orth), 1)
|
|
fp.write_from(&lexeme.flags, sizeof(lexeme.flags), 1)
|
|
fp.write_from(&lexeme.id, sizeof(lexeme.id), 1)
|
|
fp.write_from(&lexeme.length, sizeof(lexeme.length), 1)
|
|
fp.write_from(&lexeme.orth, sizeof(lexeme.orth), 1)
|
|
fp.write_from(&lexeme.lower, sizeof(lexeme.lower), 1)
|
|
fp.write_from(&lexeme.norm, sizeof(lexeme.norm), 1)
|
|
fp.write_from(&lexeme.shape, sizeof(lexeme.shape), 1)
|
|
fp.write_from(&lexeme.prefix, sizeof(lexeme.prefix), 1)
|
|
fp.write_from(&lexeme.suffix, sizeof(lexeme.suffix), 1)
|
|
fp.write_from(&lexeme.cluster, sizeof(lexeme.cluster), 1)
|
|
fp.write_from(&lexeme.prob, sizeof(lexeme.prob), 1)
|
|
fp.write_from(&lexeme.sentiment, sizeof(lexeme.sentiment), 1)
|
|
fp.write_from(&lexeme.l2_norm, sizeof(lexeme.l2_norm), 1)
|
|
fp.write_from(&lexeme.lang, sizeof(lexeme.lang), 1)
|
|
fp.close()
|
|
|
|
def load_lexemes(self, loc):
|
|
'''Load the binary vocabulary data from the given location.
|
|
|
|
Arguments:
|
|
loc (Path): The path to load from.
|
|
|
|
Returns:
|
|
None
|
|
'''
|
|
fp = CFile(loc, 'rb',
|
|
on_open_error=lambda: IOError('LexemeCs file not found at %s' % loc))
|
|
cdef LexemeC* lexeme
|
|
cdef hash_t key
|
|
cdef unicode py_str
|
|
cdef attr_t orth
|
|
assert sizeof(orth) == sizeof(lexeme.orth)
|
|
i = 0
|
|
while True:
|
|
try:
|
|
fp.read_into(&orth, 1, sizeof(orth))
|
|
except IOError:
|
|
break
|
|
lexeme = <LexemeC*>self.mem.alloc(sizeof(LexemeC), 1)
|
|
# Copy data from the file into the lexeme
|
|
fp.read_into(&lexeme.flags, 1, sizeof(lexeme.flags))
|
|
fp.read_into(&lexeme.id, 1, sizeof(lexeme.id))
|
|
fp.read_into(&lexeme.length, 1, sizeof(lexeme.length))
|
|
fp.read_into(&lexeme.orth, 1, sizeof(lexeme.orth))
|
|
fp.read_into(&lexeme.lower, 1, sizeof(lexeme.lower))
|
|
fp.read_into(&lexeme.norm, 1, sizeof(lexeme.norm))
|
|
fp.read_into(&lexeme.shape, 1, sizeof(lexeme.shape))
|
|
fp.read_into(&lexeme.prefix, 1, sizeof(lexeme.prefix))
|
|
fp.read_into(&lexeme.suffix, 1, sizeof(lexeme.suffix))
|
|
fp.read_into(&lexeme.cluster, 1, sizeof(lexeme.cluster))
|
|
fp.read_into(&lexeme.prob, 1, sizeof(lexeme.prob))
|
|
fp.read_into(&lexeme.sentiment, 1, sizeof(lexeme.sentiment))
|
|
fp.read_into(&lexeme.l2_norm, 1, sizeof(lexeme.l2_norm))
|
|
fp.read_into(&lexeme.lang, 1, sizeof(lexeme.lang))
|
|
|
|
lexeme.vector = EMPTY_VEC
|
|
py_str = self.strings[lexeme.orth]
|
|
key = hash_string(py_str)
|
|
self._by_hash.set(key, lexeme)
|
|
self._by_orth.set(lexeme.orth, lexeme)
|
|
self.length += 1
|
|
i += 1
|
|
fp.close()
|
|
|
|
def dump_vectors(self, out_loc):
|
|
'''Save the word vectors to a binary file.
|
|
|
|
Arguments:
|
|
loc (Path): The path to save to.
|
|
Returns:
|
|
None
|
|
'''
|
|
cdef int32_t vec_len = self.vectors_length
|
|
cdef int32_t word_len
|
|
cdef bytes word_str
|
|
cdef char* chars
|
|
|
|
cdef Lexeme lexeme
|
|
cdef CFile out_file = CFile(out_loc, 'wb')
|
|
for lexeme in self:
|
|
word_str = lexeme.orth_.encode('utf8')
|
|
vec = lexeme.c.vector
|
|
word_len = len(word_str)
|
|
|
|
out_file.write_from(&word_len, 1, sizeof(word_len))
|
|
out_file.write_from(&vec_len, 1, sizeof(vec_len))
|
|
|
|
chars = <char*>word_str
|
|
out_file.write_from(chars, word_len, sizeof(char))
|
|
out_file.write_from(vec, vec_len, sizeof(float))
|
|
out_file.close()
|
|
|
|
def load_vectors(self, file_):
|
|
"""Load vectors from a text-based file.
|
|
|
|
Arguments:
|
|
file_ (buffer): The file to read from. Entries should be separated by newlines,
|
|
and each entry should be whitespace delimited. The first value of the entry
|
|
should be the word string, and subsequent entries should be the values of the
|
|
vector.
|
|
|
|
Returns:
|
|
vec_len (int): The length of the vectors loaded.
|
|
"""
|
|
cdef LexemeC* lexeme
|
|
cdef attr_t orth
|
|
cdef int32_t vec_len = -1
|
|
cdef double norm = 0.0
|
|
for line_num, line in enumerate(file_):
|
|
pieces = line.split()
|
|
word_str = pieces.pop(0)
|
|
if vec_len == -1:
|
|
vec_len = len(pieces)
|
|
elif vec_len != len(pieces):
|
|
raise VectorReadError.mismatched_sizes(file_, line_num,
|
|
vec_len, len(pieces))
|
|
orth = self.strings[word_str]
|
|
lexeme = <LexemeC*><void*>self.get_by_orth(self.mem, orth)
|
|
lexeme.vector = <float*>self.mem.alloc(vec_len, sizeof(float))
|
|
for i, val_str in enumerate(pieces):
|
|
lexeme.vector[i] = float(val_str)
|
|
norm = 0.0
|
|
for i in range(vec_len):
|
|
norm += lexeme.vector[i] * lexeme.vector[i]
|
|
lexeme.l2_norm = sqrt(norm)
|
|
self.vectors_length = vec_len
|
|
return vec_len
|
|
|
|
def load_vectors_from_bin_loc(self, loc):
|
|
"""Load vectors from the location of a binary file.
|
|
|
|
Arguments:
|
|
loc (unicode): The path of the binary file to load from.
|
|
|
|
Returns:
|
|
vec_len (int): The length of the vectors loaded.
|
|
"""
|
|
cdef CFile file_ = CFile(loc, b'rb')
|
|
cdef int32_t word_len
|
|
cdef int32_t vec_len = 0
|
|
cdef int32_t prev_vec_len = 0
|
|
cdef float* vec
|
|
cdef Address mem
|
|
cdef attr_t string_id
|
|
cdef bytes py_word
|
|
cdef vector[float*] vectors
|
|
cdef int line_num = 0
|
|
cdef Pool tmp_mem = Pool()
|
|
while True:
|
|
try:
|
|
file_.read_into(&word_len, sizeof(word_len), 1)
|
|
except IOError:
|
|
break
|
|
file_.read_into(&vec_len, sizeof(vec_len), 1)
|
|
if prev_vec_len != 0 and vec_len != prev_vec_len:
|
|
raise VectorReadError.mismatched_sizes(loc, line_num,
|
|
vec_len, prev_vec_len)
|
|
if 0 >= vec_len >= MAX_VEC_SIZE:
|
|
raise VectorReadError.bad_size(loc, vec_len)
|
|
|
|
chars = <char*>file_.alloc_read(tmp_mem, word_len, sizeof(char))
|
|
vec = <float*>file_.alloc_read(self.mem, vec_len, sizeof(float))
|
|
|
|
string_id = self.strings[chars[:word_len]]
|
|
# Insert words into vocab to add vector.
|
|
self.get_by_orth(self.mem, string_id)
|
|
while string_id >= vectors.size():
|
|
vectors.push_back(EMPTY_VEC)
|
|
assert vec != NULL
|
|
vectors[string_id] = vec
|
|
line_num += 1
|
|
cdef LexemeC* lex
|
|
cdef size_t lex_addr
|
|
cdef double norm = 0.0
|
|
cdef int i
|
|
for orth, lex_addr in self._by_orth.items():
|
|
lex = <LexemeC*>lex_addr
|
|
if lex.lower < vectors.size():
|
|
lex.vector = vectors[lex.lower]
|
|
norm = 0.0
|
|
for i in range(vec_len):
|
|
norm += lex.vector[i] * lex.vector[i]
|
|
lex.l2_norm = sqrt(norm)
|
|
else:
|
|
lex.vector = EMPTY_VEC
|
|
self.vectors_length = vec_len
|
|
return vec_len
|
|
|
|
|
|
def write_binary_vectors(in_loc, out_loc):
|
|
cdef CFile out_file = CFile(out_loc, 'wb')
|
|
cdef Address mem
|
|
cdef int32_t word_len
|
|
cdef int32_t vec_len
|
|
cdef char* chars
|
|
with bz2.BZ2File(in_loc, 'r') as file_:
|
|
for line in file_:
|
|
pieces = line.split()
|
|
word = pieces.pop(0)
|
|
mem = Address(len(pieces), sizeof(float))
|
|
vec = <float*>mem.ptr
|
|
for i, val_str in enumerate(pieces):
|
|
vec[i] = float(val_str)
|
|
|
|
word_len = len(word)
|
|
vec_len = len(pieces)
|
|
|
|
out_file.write_from(&word_len, 1, sizeof(word_len))
|
|
out_file.write_from(&vec_len, 1, sizeof(vec_len))
|
|
|
|
chars = <char*>word
|
|
out_file.write_from(chars, len(word), sizeof(char))
|
|
out_file.write_from(vec, vec_len, sizeof(float))
|
|
|
|
|
|
class LookupError(Exception):
|
|
@classmethod
|
|
def mismatched_strings(cls, id_, id_string, original_string):
|
|
return cls(
|
|
"Error fetching a Lexeme from the Vocab. When looking up a string, "
|
|
"the lexeme returned had an orth ID that did not match the query string. "
|
|
"This means that the cached lexeme structs are mismatched to the "
|
|
"string encoding table. The mismatched:\n"
|
|
"Query string: {query}\n"
|
|
"Orth cached: {orth_str}\n"
|
|
"ID of orth: {orth_id}".format(
|
|
query=repr(original_string), orth_str=repr(id_string), orth_id=id_)
|
|
)
|
|
|
|
|
|
class VectorReadError(Exception):
|
|
@classmethod
|
|
def mismatched_sizes(cls, loc, line_num, prev_size, curr_size):
|
|
return cls(
|
|
"Error reading word vectors from %s on line %d.\n"
|
|
"All vectors must be the same size.\n"
|
|
"Prev size: %d\n"
|
|
"Curr size: %d" % (loc, line_num, prev_size, curr_size))
|
|
|
|
@classmethod
|
|
def bad_size(cls, loc, size):
|
|
return cls(
|
|
"Error reading word vectors from %s.\n"
|
|
"Vector size: %d\n"
|
|
"Max size: %d\n"
|
|
"Min size: 1\n" % (loc, size, MAX_VEC_SIZE))
|