mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-25 05:01:02 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			78 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			78 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import numpy as np
 | |
| from keras.models import model_from_json
 | |
| 
 | |
| try:
 | |
|     import cPickle as pickle
 | |
| except ImportError:
 | |
|     import pickle
 | |
| 
 | |
| 
 | |
| class KerasSimilarityShim(object):
 | |
|     entailment_types = ["entailment", "contradiction", "neutral"]
 | |
| 
 | |
|     @classmethod
 | |
|     def load(cls, path, nlp, max_length=100, get_features=None):
 | |
| 
 | |
|         if get_features is None:
 | |
|             get_features = get_word_ids
 | |
| 
 | |
|         with (path / "config.json").open() as file_:
 | |
|             model = model_from_json(file_.read())
 | |
|         with (path / "model").open("rb") as file_:
 | |
|             weights = pickle.load(file_)
 | |
| 
 | |
|         embeddings = get_embeddings(nlp.vocab)
 | |
|         weights.insert(1, embeddings)
 | |
|         model.set_weights(weights)
 | |
| 
 | |
|         return cls(model, get_features=get_features, max_length=max_length)
 | |
| 
 | |
|     def __init__(self, model, get_features=None, max_length=100):
 | |
|         self.model = model
 | |
|         self.get_features = get_features
 | |
|         self.max_length = max_length
 | |
| 
 | |
|     def __call__(self, doc):
 | |
|         doc.user_hooks["similarity"] = self.predict
 | |
|         doc.user_span_hooks["similarity"] = self.predict
 | |
| 
 | |
|         return doc
 | |
| 
 | |
|     def predict(self, doc1, doc2):
 | |
|         x1 = self.get_features([doc1], max_length=self.max_length)
 | |
|         x2 = self.get_features([doc2], max_length=self.max_length)
 | |
|         scores = self.model.predict([x1, x2])
 | |
| 
 | |
|         return self.entailment_types[scores.argmax()], scores.max()
 | |
| 
 | |
| 
 | |
| def get_embeddings(vocab, nr_unk=100):
 | |
|     # the extra +1 is for a zero vector representing sentence-final padding
 | |
|     num_vectors = max(lex.rank for lex in vocab) + 2
 | |
| 
 | |
|     # create random vectors for OOV tokens
 | |
|     oov = np.random.normal(size=(nr_unk, vocab.vectors_length))
 | |
|     oov = oov / oov.sum(axis=1, keepdims=True)
 | |
| 
 | |
|     vectors = np.zeros((num_vectors + nr_unk, vocab.vectors_length), dtype="float32")
 | |
|     vectors[1 : (nr_unk + 1),] = oov
 | |
|     for lex in vocab:
 | |
|         if lex.has_vector and lex.vector_norm > 0:
 | |
|             vectors[nr_unk + lex.rank + 1] = lex.vector / lex.vector_norm
 | |
| 
 | |
|     return vectors
 | |
| 
 | |
| 
 | |
| def get_word_ids(docs, max_length=100, nr_unk=100):
 | |
|     Xs = np.zeros((len(docs), max_length), dtype="int32")
 | |
| 
 | |
|     for i, doc in enumerate(docs):
 | |
|         for j, token in enumerate(doc):
 | |
|             if j == max_length:
 | |
|                 break
 | |
|             if token.has_vector:
 | |
|                 Xs[i, j] = token.rank + nr_unk + 1
 | |
|             else:
 | |
|                 Xs[i, j] = token.rank % nr_unk + 1
 | |
|     return Xs
 |