mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-25 05:01:02 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			137 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			137 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #!/usr/bin/env python
 | |
| # coding: utf8
 | |
| 
 | |
| """Example of defining and (pre)training spaCy's knowledge base,
 | |
| which is needed to implement entity linking functionality.
 | |
| 
 | |
| For more details, see the documentation:
 | |
| * Knowledge base: https://spacy.io/api/kb
 | |
| * Entity Linking: https://spacy.io/usage/linguistic-features#entity-linking
 | |
| 
 | |
| Compatible with: spaCy v2.2
 | |
| Last tested with: v2.2
 | |
| """
 | |
| from __future__ import unicode_literals, print_function
 | |
| 
 | |
| import plac
 | |
| from pathlib import Path
 | |
| 
 | |
| from spacy.vocab import Vocab
 | |
| import spacy
 | |
| from spacy.kb import KnowledgeBase
 | |
| 
 | |
| from bin.wiki_entity_linking.train_descriptions import EntityEncoder
 | |
| 
 | |
| 
 | |
| # Q2146908 (Russ Cochran): American golfer
 | |
| # Q7381115 (Russ Cochran): publisher
 | |
| ENTITIES = {"Q2146908": ("American golfer", 342), "Q7381115": ("publisher", 17)}
 | |
| 
 | |
| INPUT_DIM = 300  # dimension of pretrained input vectors
 | |
| DESC_WIDTH = 64  # dimension of output entity vectors
 | |
| 
 | |
| 
 | |
| @plac.annotations(
 | |
|     vocab_path=("Path to the vocab for the kb", "option", "v", Path),
 | |
|     model=("Model name, should have pretrained word embeddings", "option", "m", str),
 | |
|     output_dir=("Optional output directory", "option", "o", Path),
 | |
|     n_iter=("Number of training iterations", "option", "n", int),
 | |
| )
 | |
| def main(vocab_path=None, model=None, output_dir=None, n_iter=50):
 | |
|     """Load the model, create the KB and pretrain the entity encodings.
 | |
|     Either an nlp model or a vocab is needed to provide access to pretrained word embeddings.
 | |
|     If an output_dir is provided, the KB will be stored there in a file 'kb'.
 | |
|     When providing an nlp model, the updated vocab will also be written to a directory in the output_dir."""
 | |
|     if model is None and vocab_path is None:
 | |
|         raise ValueError("Either the `nlp` model or the `vocab` should be specified.")
 | |
| 
 | |
|     if model is not None:
 | |
|         nlp = spacy.load(model)  # load existing spaCy model
 | |
|         print("Loaded model '%s'" % model)
 | |
|     else:
 | |
|         vocab = Vocab().from_disk(vocab_path)
 | |
|         # create blank Language class with specified vocab
 | |
|         nlp = spacy.blank("en", vocab=vocab)
 | |
|         print("Created blank 'en' model with vocab from '%s'" % vocab_path)
 | |
| 
 | |
|     kb = KnowledgeBase(vocab=nlp.vocab)
 | |
| 
 | |
|     # set up the data
 | |
|     entity_ids = []
 | |
|     descriptions = []
 | |
|     freqs = []
 | |
|     for key, value in ENTITIES.items():
 | |
|         desc, freq = value
 | |
|         entity_ids.append(key)
 | |
|         descriptions.append(desc)
 | |
|         freqs.append(freq)
 | |
| 
 | |
|     # training entity description encodings
 | |
|     # this part can easily be replaced with a custom entity encoder
 | |
|     encoder = EntityEncoder(
 | |
|         nlp=nlp,
 | |
|         input_dim=INPUT_DIM,
 | |
|         desc_width=DESC_WIDTH,
 | |
|         epochs=n_iter,
 | |
|     )
 | |
|     encoder.train(description_list=descriptions, to_print=True)
 | |
| 
 | |
|     # get the pretrained entity vectors
 | |
|     embeddings = encoder.apply_encoder(descriptions)
 | |
| 
 | |
|     # set the entities, can also be done by calling `kb.add_entity` for each entity
 | |
|     kb.set_entities(entity_list=entity_ids, freq_list=freqs, vector_list=embeddings)
 | |
| 
 | |
|     # adding aliases, the entities need to be defined in the KB beforehand
 | |
|     kb.add_alias(
 | |
|         alias="Russ Cochran",
 | |
|         entities=["Q2146908", "Q7381115"],
 | |
|         probabilities=[0.24, 0.7],  # the sum of these probabilities should not exceed 1
 | |
|     )
 | |
| 
 | |
|     # test the trained model
 | |
|     print()
 | |
|     _print_kb(kb)
 | |
| 
 | |
|     # save model to output directory
 | |
|     if output_dir is not None:
 | |
|         output_dir = Path(output_dir)
 | |
|         if not output_dir.exists():
 | |
|             output_dir.mkdir()
 | |
|         kb_path = str(output_dir / "kb")
 | |
|         kb.dump(kb_path)
 | |
|         print()
 | |
|         print("Saved KB to", kb_path)
 | |
| 
 | |
|         # only storing the vocab if we weren't already reading it from file
 | |
|         if not vocab_path:
 | |
|             vocab_path = output_dir / "vocab"
 | |
|             kb.vocab.to_disk(vocab_path)
 | |
|             print("Saved vocab to", vocab_path)
 | |
| 
 | |
|         print()
 | |
| 
 | |
|         # test the saved model
 | |
|         # always reload a knowledge base with the same vocab instance!
 | |
|         print("Loading vocab from", vocab_path)
 | |
|         print("Loading KB from", kb_path)
 | |
|         vocab2 = Vocab().from_disk(vocab_path)
 | |
|         kb2 = KnowledgeBase(vocab=vocab2)
 | |
|         kb2.load_bulk(kb_path)
 | |
|         _print_kb(kb2)
 | |
|         print()
 | |
| 
 | |
| 
 | |
| def _print_kb(kb):
 | |
|     print(kb.get_size_entities(), "kb entities:", kb.get_entity_strings())
 | |
|     print(kb.get_size_aliases(), "kb aliases:", kb.get_alias_strings())
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     plac.call(main)
 | |
| 
 | |
|     # Expected output:
 | |
| 
 | |
|     # 2 kb entities: ['Q2146908', 'Q7381115']
 | |
|     # 1 kb aliases: ['Russ Cochran']
 |