mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-25 05:01:02 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			222 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			222 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """This script is experimental.
 | |
| 
 | |
| Try pre-training the CNN component of the text categorizer using a cheap
 | |
| language modelling-like objective. Specifically, we load pretrained vectors
 | |
| (from something like word2vec, GloVe, FastText etc), and use the CNN to
 | |
| predict the tokens' pretrained vectors. This isn't as easy as it sounds:
 | |
| we're not merely doing compression here, because heavy dropout is applied,
 | |
| including over the input words. This means the model must often (50% of the time)
 | |
| use the context in order to predict the word.
 | |
| 
 | |
| To evaluate the technique, we're pre-training with the 50k texts from the IMDB
 | |
| corpus, and then training with only 100 labels. Note that it's a bit dirty to
 | |
| pre-train with the development data, but also not *so* terrible: we're not using
 | |
| the development labels, after all --- only the unlabelled text.
 | |
| """
 | |
| import plac
 | |
| import random
 | |
| import spacy
 | |
| import thinc.extra.datasets
 | |
| from spacy.util import minibatch, use_gpu, compounding
 | |
| from spacy._ml import Tok2Vec
 | |
| from spacy.pipeline import TextCategorizer
 | |
| import numpy
 | |
| 
 | |
| 
 | |
| def load_texts(limit=0):
 | |
|     train, dev = thinc.extra.datasets.imdb()
 | |
|     train_texts, train_labels = zip(*train)
 | |
|     dev_texts, dev_labels = zip(*train)
 | |
|     train_texts = list(train_texts)
 | |
|     dev_texts = list(dev_texts)
 | |
|     random.shuffle(train_texts)
 | |
|     random.shuffle(dev_texts)
 | |
|     if limit >= 1:
 | |
|         return train_texts[:limit]
 | |
|     else:
 | |
|         return list(train_texts) + list(dev_texts)
 | |
| 
 | |
| 
 | |
| def load_textcat_data(limit=0):
 | |
|     """Load data from the IMDB dataset."""
 | |
|     # Partition off part of the train data for evaluation
 | |
|     train_data, eval_data = thinc.extra.datasets.imdb()
 | |
|     random.shuffle(train_data)
 | |
|     train_data = train_data[-limit:]
 | |
|     texts, labels = zip(*train_data)
 | |
|     eval_texts, eval_labels = zip(*eval_data)
 | |
|     cats = [{"POSITIVE": bool(y), "NEGATIVE": not bool(y)} for y in labels]
 | |
|     eval_cats = [{"POSITIVE": bool(y), "NEGATIVE": not bool(y)} for y in eval_labels]
 | |
|     return (texts, cats), (eval_texts, eval_cats)
 | |
| 
 | |
| 
 | |
| def prefer_gpu():
 | |
|     used = spacy.util.use_gpu(0)
 | |
|     if used is None:
 | |
|         return False
 | |
|     else:
 | |
|         import cupy.random
 | |
| 
 | |
|         cupy.random.seed(0)
 | |
|         return True
 | |
| 
 | |
| 
 | |
| def build_textcat_model(tok2vec, nr_class, width):
 | |
|     from thinc.v2v import Model, Softmax, Maxout
 | |
|     from thinc.api import flatten_add_lengths, chain
 | |
|     from thinc.t2v import Pooling, sum_pool, mean_pool, max_pool
 | |
|     from thinc.misc import Residual, LayerNorm
 | |
|     from spacy._ml import logistic, zero_init
 | |
| 
 | |
|     with Model.define_operators({">>": chain}):
 | |
|         model = (
 | |
|             tok2vec
 | |
|             >> flatten_add_lengths
 | |
|             >> Pooling(mean_pool)
 | |
|             >> Softmax(nr_class, width)
 | |
|         )
 | |
|     model.tok2vec = tok2vec
 | |
|     return model
 | |
| 
 | |
| 
 | |
| def block_gradients(model):
 | |
|     from thinc.api import wrap
 | |
| 
 | |
|     def forward(X, drop=0.0):
 | |
|         Y, _ = model.begin_update(X, drop=drop)
 | |
|         return Y, None
 | |
| 
 | |
|     return wrap(forward, model)
 | |
| 
 | |
| 
 | |
| def create_pipeline(width, embed_size, vectors_model):
 | |
|     print("Load vectors")
 | |
|     nlp = spacy.load(vectors_model)
 | |
|     print("Start training")
 | |
|     textcat = TextCategorizer(
 | |
|         nlp.vocab,
 | |
|         labels=["POSITIVE", "NEGATIVE"],
 | |
|         model=build_textcat_model(
 | |
|             Tok2Vec(width=width, embed_size=embed_size), 2, width
 | |
|         ),
 | |
|     )
 | |
| 
 | |
|     nlp.add_pipe(textcat)
 | |
|     return nlp
 | |
| 
 | |
| 
 | |
| def train_tensorizer(nlp, texts, dropout, n_iter):
 | |
|     # temp fix to avoid import issues cf https://github.com/explosion/spaCy/issues/4200
 | |
|     import tqdm
 | |
| 
 | |
|     tensorizer = nlp.create_pipe("tensorizer")
 | |
|     nlp.add_pipe(tensorizer)
 | |
|     optimizer = nlp.begin_training()
 | |
|     for i in range(n_iter):
 | |
|         losses = {}
 | |
|         for i, batch in enumerate(minibatch(tqdm.tqdm(texts))):
 | |
|             docs = [nlp.make_doc(text) for text in batch]
 | |
|             tensorizer.update(docs, None, losses=losses, sgd=optimizer, drop=dropout)
 | |
|         print(losses)
 | |
|     return optimizer
 | |
| 
 | |
| 
 | |
| def train_textcat(nlp, n_texts, n_iter=10):
 | |
|     # temp fix to avoid import issues cf https://github.com/explosion/spaCy/issues/4200
 | |
|     import tqdm
 | |
| 
 | |
|     textcat = nlp.get_pipe("textcat")
 | |
|     tok2vec_weights = textcat.model.tok2vec.to_bytes()
 | |
|     (train_texts, train_cats), (dev_texts, dev_cats) = load_textcat_data(limit=n_texts)
 | |
|     print(
 | |
|         "Using {} examples ({} training, {} evaluation)".format(
 | |
|             n_texts, len(train_texts), len(dev_texts)
 | |
|         )
 | |
|     )
 | |
|     train_data = list(zip(train_texts, [{"cats": cats} for cats in train_cats]))
 | |
| 
 | |
|     # get names of other pipes to disable them during training
 | |
|     other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "textcat"]
 | |
|     with nlp.disable_pipes(*other_pipes):  # only train textcat
 | |
|         optimizer = nlp.begin_training()
 | |
|         textcat.model.tok2vec.from_bytes(tok2vec_weights)
 | |
|         print("Training the model...")
 | |
|         print("{:^5}\t{:^5}\t{:^5}\t{:^5}".format("LOSS", "P", "R", "F"))
 | |
|         for i in range(n_iter):
 | |
|             losses = {"textcat": 0.0}
 | |
|             # batch up the examples using spaCy's minibatch
 | |
|             batches = minibatch(tqdm.tqdm(train_data), size=2)
 | |
|             for batch in batches:
 | |
|                 texts, annotations = zip(*batch)
 | |
|                 nlp.update(texts, annotations, sgd=optimizer, drop=0.2, losses=losses)
 | |
|             with textcat.model.use_params(optimizer.averages):
 | |
|                 # evaluate on the dev data split off in load_data()
 | |
|                 scores = evaluate_textcat(nlp.tokenizer, textcat, dev_texts, dev_cats)
 | |
|             print(
 | |
|                 "{0:.3f}\t{1:.3f}\t{2:.3f}\t{3:.3f}".format(  # print a simple table
 | |
|                     losses["textcat"],
 | |
|                     scores["textcat_p"],
 | |
|                     scores["textcat_r"],
 | |
|                     scores["textcat_f"],
 | |
|                 )
 | |
|             )
 | |
| 
 | |
| 
 | |
| def evaluate_textcat(tokenizer, textcat, texts, cats):
 | |
|     docs = (tokenizer(text) for text in texts)
 | |
|     tp = 1e-8
 | |
|     fp = 1e-8
 | |
|     tn = 1e-8
 | |
|     fn = 1e-8
 | |
|     for i, doc in enumerate(textcat.pipe(docs)):
 | |
|         gold = cats[i]
 | |
|         for label, score in doc.cats.items():
 | |
|             if label not in gold:
 | |
|                 continue
 | |
|             if score >= 0.5 and gold[label] >= 0.5:
 | |
|                 tp += 1.0
 | |
|             elif score >= 0.5 and gold[label] < 0.5:
 | |
|                 fp += 1.0
 | |
|             elif score < 0.5 and gold[label] < 0.5:
 | |
|                 tn += 1
 | |
|             elif score < 0.5 and gold[label] >= 0.5:
 | |
|                 fn += 1
 | |
|     precision = tp / (tp + fp)
 | |
|     recall = tp / (tp + fn)
 | |
|     f_score = 2 * (precision * recall) / (precision + recall)
 | |
|     return {"textcat_p": precision, "textcat_r": recall, "textcat_f": f_score}
 | |
| 
 | |
| 
 | |
| @plac.annotations(
 | |
|     width=("Width of CNN layers", "positional", None, int),
 | |
|     embed_size=("Embedding rows", "positional", None, int),
 | |
|     pretrain_iters=("Number of iterations to pretrain", "option", "pn", int),
 | |
|     train_iters=("Number of iterations to pretrain", "option", "tn", int),
 | |
|     train_examples=("Number of labelled examples", "option", "eg", int),
 | |
|     vectors_model=("Name or path to vectors model to learn from"),
 | |
| )
 | |
| def main(
 | |
|     width,
 | |
|     embed_size,
 | |
|     vectors_model,
 | |
|     pretrain_iters=30,
 | |
|     train_iters=30,
 | |
|     train_examples=1000,
 | |
| ):
 | |
|     random.seed(0)
 | |
|     numpy.random.seed(0)
 | |
|     use_gpu = prefer_gpu()
 | |
|     print("Using GPU?", use_gpu)
 | |
| 
 | |
|     nlp = create_pipeline(width, embed_size, vectors_model)
 | |
|     print("Load data")
 | |
|     texts = load_texts(limit=0)
 | |
|     print("Train tensorizer")
 | |
|     optimizer = train_tensorizer(nlp, texts, dropout=0.2, n_iter=pretrain_iters)
 | |
|     print("Train textcat")
 | |
|     train_textcat(nlp, train_examples, n_iter=train_iters)
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     plac.call(main)
 |