mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			159 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			159 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from typing import List
 | 
						|
 | 
						|
import pytest
 | 
						|
from thinc.api import fix_random_seed, Adam, set_dropout_rate
 | 
						|
from numpy.testing import assert_array_equal
 | 
						|
import numpy
 | 
						|
 | 
						|
from spacy.ml.models import build_Tok2Vec_model, MultiHashEmbed, MaxoutWindowEncoder
 | 
						|
from spacy.ml.models import build_text_classifier, build_simple_cnn_text_classifier
 | 
						|
from spacy.lang.en import English
 | 
						|
from spacy.lang.en.examples import sentences as EN_SENTENCES
 | 
						|
 | 
						|
 | 
						|
def get_textcat_kwargs():
 | 
						|
    return {
 | 
						|
        "width": 64,
 | 
						|
        "embed_size": 2000,
 | 
						|
        "pretrained_vectors": None,
 | 
						|
        "exclusive_classes": False,
 | 
						|
        "ngram_size": 1,
 | 
						|
        "window_size": 1,
 | 
						|
        "conv_depth": 2,
 | 
						|
        "dropout": None,
 | 
						|
        "nO": 7,
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
def get_textcat_cnn_kwargs():
 | 
						|
    return {
 | 
						|
        "tok2vec": test_tok2vec(),
 | 
						|
        "exclusive_classes": False,
 | 
						|
        "nO": 13,
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
def get_all_params(model):
 | 
						|
    params = []
 | 
						|
    for node in model.walk():
 | 
						|
        for name in node.param_names:
 | 
						|
            params.append(node.get_param(name).ravel())
 | 
						|
    return node.ops.xp.concatenate(params)
 | 
						|
 | 
						|
 | 
						|
def get_docs():
 | 
						|
    nlp = English()
 | 
						|
    return list(nlp.pipe(EN_SENTENCES + [" ".join(EN_SENTENCES)]))
 | 
						|
 | 
						|
 | 
						|
def get_gradient(model, Y):
 | 
						|
    if isinstance(Y, model.ops.xp.ndarray):
 | 
						|
        dY = model.ops.alloc(Y.shape, dtype=Y.dtype)
 | 
						|
        dY += model.ops.xp.random.uniform(-1.0, 1.0, Y.shape)
 | 
						|
        return dY
 | 
						|
    elif isinstance(Y, List):
 | 
						|
        return [get_gradient(model, y) for y in Y]
 | 
						|
    else:
 | 
						|
        raise ValueError(f"Could not get gradient for type {type(Y)}")
 | 
						|
 | 
						|
 | 
						|
def get_tok2vec_kwargs():
 | 
						|
    # This actually creates models, so seems best to put it in a function.
 | 
						|
    return {
 | 
						|
        "embed": MultiHashEmbed(
 | 
						|
            width=32, rows=500, also_embed_subwords=True, also_use_static_vectors=False
 | 
						|
        ),
 | 
						|
        "encode": MaxoutWindowEncoder(
 | 
						|
            width=32, depth=2, maxout_pieces=2, window_size=1,
 | 
						|
        ),
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
def test_tok2vec():
 | 
						|
    return build_Tok2Vec_model(**get_tok2vec_kwargs())
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "seed,model_func,kwargs",
 | 
						|
    [
 | 
						|
        (0, build_Tok2Vec_model, get_tok2vec_kwargs()),
 | 
						|
        (0, build_text_classifier, get_textcat_kwargs()),
 | 
						|
        (0, build_simple_cnn_text_classifier, get_textcat_cnn_kwargs()),
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_models_initialize_consistently(seed, model_func, kwargs):
 | 
						|
    fix_random_seed(seed)
 | 
						|
    model1 = model_func(**kwargs)
 | 
						|
    model1.initialize()
 | 
						|
    fix_random_seed(seed)
 | 
						|
    model2 = model_func(**kwargs)
 | 
						|
    model2.initialize()
 | 
						|
    params1 = get_all_params(model1)
 | 
						|
    params2 = get_all_params(model2)
 | 
						|
    assert_array_equal(params1, params2)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "seed,model_func,kwargs,get_X",
 | 
						|
    [
 | 
						|
        (0, build_Tok2Vec_model, get_tok2vec_kwargs(), get_docs),
 | 
						|
        (0, build_text_classifier, get_textcat_kwargs(), get_docs),
 | 
						|
        (0, build_simple_cnn_text_classifier, get_textcat_cnn_kwargs(), get_docs),
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_models_predict_consistently(seed, model_func, kwargs, get_X):
 | 
						|
    fix_random_seed(seed)
 | 
						|
    model1 = model_func(**kwargs).initialize()
 | 
						|
    Y1 = model1.predict(get_X())
 | 
						|
    fix_random_seed(seed)
 | 
						|
    model2 = model_func(**kwargs).initialize()
 | 
						|
    Y2 = model2.predict(get_X())
 | 
						|
 | 
						|
    if model1.has_ref("tok2vec"):
 | 
						|
        tok2vec1 = model1.get_ref("tok2vec").predict(get_X())
 | 
						|
        tok2vec2 = model2.get_ref("tok2vec").predict(get_X())
 | 
						|
        for i in range(len(tok2vec1)):
 | 
						|
            for j in range(len(tok2vec1[i])):
 | 
						|
                assert_array_equal(
 | 
						|
                    numpy.asarray(tok2vec1[i][j]), numpy.asarray(tok2vec2[i][j])
 | 
						|
                )
 | 
						|
 | 
						|
    if isinstance(Y1, numpy.ndarray):
 | 
						|
        assert_array_equal(Y1, Y2)
 | 
						|
    elif isinstance(Y1, List):
 | 
						|
        assert len(Y1) == len(Y2)
 | 
						|
        for y1, y2 in zip(Y1, Y2):
 | 
						|
            assert_array_equal(y1, y2)
 | 
						|
    else:
 | 
						|
        raise ValueError(f"Could not compare type {type(Y1)}")
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "seed,dropout,model_func,kwargs,get_X",
 | 
						|
    [
 | 
						|
        (0, 0.2, build_Tok2Vec_model, get_tok2vec_kwargs(), get_docs),
 | 
						|
        (0, 0.2, build_text_classifier, get_textcat_kwargs(), get_docs),
 | 
						|
        (0, 0.2, build_simple_cnn_text_classifier, get_textcat_cnn_kwargs(), get_docs),
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_models_update_consistently(seed, dropout, model_func, kwargs, get_X):
 | 
						|
    def get_updated_model():
 | 
						|
        fix_random_seed(seed)
 | 
						|
        optimizer = Adam(0.001)
 | 
						|
        model = model_func(**kwargs).initialize()
 | 
						|
        initial_params = get_all_params(model)
 | 
						|
        set_dropout_rate(model, dropout)
 | 
						|
        for _ in range(5):
 | 
						|
            Y, get_dX = model.begin_update(get_X())
 | 
						|
            dY = get_gradient(model, Y)
 | 
						|
            get_dX(dY)
 | 
						|
            model.finish_update(optimizer)
 | 
						|
        updated_params = get_all_params(model)
 | 
						|
        with pytest.raises(AssertionError):
 | 
						|
            assert_array_equal(initial_params, updated_params)
 | 
						|
        return model
 | 
						|
 | 
						|
    model1 = get_updated_model()
 | 
						|
    model2 = get_updated_model()
 | 
						|
    assert_array_equal(get_all_params(model1), get_all_params(model2))
 |