spaCy/spacy/tests/lang/ja/test_tokenizer.py

106 lines
4.7 KiB
Python

# coding: utf-8
from __future__ import unicode_literals
import pytest
from ...tokenizer.test_naughty_strings import NAUGHTY_STRINGS
from spacy.lang.ja import Japanese
# fmt: off
TOKENIZER_TESTS = [
("日本語だよ", ['日本', '', '', '']),
("東京タワーの近くに住んでいます。", ['東京', 'タワー', '', '近く', '', '住ん', '', '', 'ます', '']),
("吾輩は猫である。", ['吾輩', '', '', '', 'ある', '']),
("月に代わって、お仕置きよ!", ['', '', '代わっ', '', '', '', '仕置き', '', '!']),
("すもももももももものうち", ['すもも', '', 'もも', '', 'もも', '', 'うち'])
]
TAG_TESTS = [
("日本語だよ", ['名詞-固有名詞-地名-国', '名詞-普通名詞-一般', '助動詞', '助詞-終助詞']),
("東京タワーの近くに住んでいます。", ['名詞-固有名詞-地名-一般', '名詞-普通名詞-一般', '助詞-格助詞', '名詞-普通名詞-副詞可能', '助詞-格助詞', '動詞-一般', '助詞-接続助詞', '動詞-非自立可能', '助動詞', '補助記号-句点']),
("吾輩は猫である。", ['代名詞', '助詞-係助詞', '名詞-普通名詞-一般', '助動詞', '動詞-非自立可能', '補助記号-句点']),
("月に代わって、お仕置きよ!", ['名詞-普通名詞-助数詞可能', '助詞-格助詞', '動詞-一般', '助詞-接続助詞', '補助記号-読点', '接頭辞', '名詞-普通名詞-一般', '助詞-終助詞', '補助記号-句点']),
("すもももももももものうち", ['名詞-普通名詞-一般', '助詞-係助詞', '名詞-普通名詞-一般', '助詞-係助詞', '名詞-普通名詞-一般', '助詞-格助詞', '名詞-普通名詞-副詞可能'])
]
POS_TESTS = [
('日本語だよ', ['fish', 'NOUN', 'AUX', 'PART']),
('東京タワーの近くに住んでいます。', ['PROPN', 'NOUN', 'ADP', 'NOUN', 'ADP', 'VERB', 'SCONJ', 'VERB', 'AUX', 'PUNCT']),
('吾輩は猫である。', ['PRON', 'ADP', 'NOUN', 'AUX', 'VERB', 'PUNCT']),
('月に代わって、お仕置きよ!', ['NOUN', 'ADP', 'VERB', 'SCONJ', 'PUNCT', 'NOUN', 'NOUN', 'PART', 'PUNCT']),
('すもももももももものうち', ['NOUN', 'ADP', 'NOUN', 'ADP', 'NOUN', 'ADP', 'NOUN'])
]
SENTENCE_TESTS = [
('あれ。これ。', ['あれ。', 'これ。']),
('「伝染るんです。」という漫画があります。',
['「伝染るんです。」という漫画があります。']),
]
# fmt: on
@pytest.mark.parametrize("text,expected_tokens", TOKENIZER_TESTS)
def test_ja_tokenizer(ja_tokenizer, text, expected_tokens):
tokens = [token.text for token in ja_tokenizer(text)]
assert tokens == expected_tokens
@pytest.mark.parametrize("text,expected_tags", TAG_TESTS)
def test_ja_tokenizer_tags(ja_tokenizer, text, expected_tags):
tags = [token.tag_ for token in ja_tokenizer(text)]
assert tags == expected_tags
#XXX This isn't working? Always passes
@pytest.mark.parametrize("text,expected_pos", POS_TESTS)
def test_ja_tokenizer_pos(ja_tokenizer, text, expected_pos):
pos = [token.pos_ for token in ja_tokenizer(text)]
assert pos == expected_pos
@pytest.mark.skip(reason="sentence segmentation in tokenizer is buggy")
@pytest.mark.parametrize("text,expected_sents", SENTENCE_TESTS)
def test_ja_tokenizer_pos(ja_tokenizer, text, expected_sents):
sents = [str(sent) for sent in ja_tokenizer(text).sents]
assert sents == expected_sents
def test_ja_tokenizer_extra_spaces(ja_tokenizer):
# note: three spaces after "I"
tokens = ja_tokenizer("I like cheese.")
assert tokens[1].orth_ == " "
@pytest.mark.parametrize("text", NAUGHTY_STRINGS)
def test_ja_tokenizer_naughty_strings(ja_tokenizer, text):
tokens = ja_tokenizer(text)
assert tokens.text_with_ws == text
@pytest.mark.parametrize("text,len_a,len_b,len_c",
[
("選挙管理委員会", 4, 3, 1),
("客室乗務員", 3, 2, 1),
("労働者協同組合", 4, 3, 1),
("機能性食品", 3, 2, 1),
]
)
def test_ja_tokenizer_split_modes(ja_tokenizer, text, len_a, len_b, len_c):
nlp_a = Japanese(meta={"tokenizer": {"config": {"split_mode": "A"}}})
nlp_b = Japanese(meta={"tokenizer": {"config": {"split_mode": "B"}}})
nlp_c = Japanese(meta={"tokenizer": {"config": {"split_mode": "C"}}})
assert len(ja_tokenizer(text)) == len_a
assert len(nlp_a(text)) == len_a
assert len(nlp_b(text)) == len_b
assert len(nlp_c(text)) == len_c
def test_ja_tokenizer_emptyish_texts(ja_tokenizer):
doc = ja_tokenizer("")
assert len(doc) == 0
doc = ja_tokenizer(" ")
assert len(doc) == 1
doc = ja_tokenizer("\n\n\n \t\t \n\n\n")
assert len(doc) == 1