spaCy/spacy/language.py
Matthew Honnibal 4cc3ebe74e Format
2024-09-09 20:56:01 +02:00

2452 lines
104 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import functools
import inspect
import itertools
import multiprocessing as mp
import random
import traceback
import warnings
from contextlib import ExitStack, contextmanager
from copy import deepcopy
from dataclasses import dataclass
from itertools import chain, cycle
from pathlib import Path
from timeit import default_timer as timer
from typing import (
Any,
Callable,
Dict,
Iterable,
Iterator,
List,
NoReturn,
Optional,
Pattern,
Sequence,
Set,
Tuple,
TypeVar,
Union,
cast,
overload,
)
import srsly
from cymem.cymem import Pool
from thinc.api import Config, CupyOps, Optimizer, get_current_ops
from . import about, ty, util
from .compat import Literal
from .errors import Errors, Warnings
from .git_info import GIT_VERSION
from .lang.punctuation import TOKENIZER_INFIXES, TOKENIZER_PREFIXES, TOKENIZER_SUFFIXES
from .lang.tokenizer_exceptions import BASE_EXCEPTIONS, URL_MATCH
from .lookups import load_lookups
from .pipe_analysis import analyze_pipes, print_pipe_analysis, validate_attrs
from .schemas import (
ConfigSchema,
ConfigSchemaInit,
ConfigSchemaNlp,
ConfigSchemaPretrain,
validate_init_settings,
)
from .scorer import Scorer
from .tokenizer import Tokenizer
from .tokens import Doc
from .tokens.underscore import Underscore
from .training import Example, validate_examples
from .training.initialize import init_tok2vec, init_vocab
from .util import (
_DEFAULT_EMPTY_PIPES,
CONFIG_SECTION_ORDER,
SimpleFrozenDict,
SimpleFrozenList,
_pipe,
combine_score_weights,
raise_error,
registry,
warn_if_jupyter_cupy,
)
from .vectors import BaseVectors
from .vocab import Vocab, create_vocab
PipeCallable = Callable[[Doc], Doc]
# This is the base config will all settings (training etc.)
DEFAULT_CONFIG_PATH = Path(__file__).parent / "default_config.cfg"
DEFAULT_CONFIG = util.load_config(DEFAULT_CONFIG_PATH)
# This is the base config for the [pretraining] block and currently not included
# in the main config and only added via the 'init fill-config' command
DEFAULT_CONFIG_PRETRAIN_PATH = Path(__file__).parent / "default_config_pretraining.cfg"
# Type variable for contexts piped with documents
_AnyContext = TypeVar("_AnyContext")
class BaseDefaults:
"""Language data defaults, available via Language.Defaults. Can be
overwritten by language subclasses by defining their own subclasses of
Language.Defaults.
"""
config: Config = Config(section_order=CONFIG_SECTION_ORDER)
tokenizer_exceptions: Dict[str, List[dict]] = BASE_EXCEPTIONS
prefixes: Optional[Sequence[Union[str, Pattern]]] = TOKENIZER_PREFIXES
suffixes: Optional[Sequence[Union[str, Pattern]]] = TOKENIZER_SUFFIXES
infixes: Optional[Sequence[Union[str, Pattern]]] = TOKENIZER_INFIXES
token_match: Optional[Callable] = None
url_match: Optional[Callable] = URL_MATCH
syntax_iterators: Dict[str, Callable] = {}
lex_attr_getters: Dict[int, Callable[[str], Any]] = {}
stop_words: Set[str] = set()
writing_system = {"direction": "ltr", "has_case": True, "has_letters": True}
@registry.tokenizers("spacy.Tokenizer.v1")
def create_tokenizer() -> Callable[["Language"], Tokenizer]:
"""Registered function to create a tokenizer. Returns a factory that takes
the nlp object and returns a Tokenizer instance using the language detaults.
"""
def tokenizer_factory(nlp: "Language") -> Tokenizer:
prefixes = nlp.Defaults.prefixes
suffixes = nlp.Defaults.suffixes
infixes = nlp.Defaults.infixes
prefix_search = util.compile_prefix_regex(prefixes).search if prefixes else None
suffix_search = util.compile_suffix_regex(suffixes).search if suffixes else None
infix_finditer = util.compile_infix_regex(infixes).finditer if infixes else None
return Tokenizer(
nlp.vocab,
rules=nlp.Defaults.tokenizer_exceptions,
prefix_search=prefix_search,
suffix_search=suffix_search,
infix_finditer=infix_finditer,
token_match=nlp.Defaults.token_match,
url_match=nlp.Defaults.url_match,
)
return tokenizer_factory
@registry.misc("spacy.LookupsDataLoader.v1")
def load_lookups_data(lang, tables):
util.logger.debug("Loading lookups from spacy-lookups-data: %s", tables)
lookups = load_lookups(lang=lang, tables=tables)
return lookups
class Language:
"""A text-processing pipeline. Usually you'll load this once per process,
and pass the instance around your application.
Defaults (class): Settings, data and factory methods for creating the `nlp`
object and processing pipeline.
lang (str): IETF language code, such as 'en'.
DOCS: https://spacy.io/api/language
"""
Defaults = BaseDefaults
lang: Optional[str] = None
default_config = DEFAULT_CONFIG
factories = SimpleFrozenDict(error=Errors.E957)
_factory_meta: Dict[str, "FactoryMeta"] = {} # meta by factory
def __init__(
self,
vocab: Union[Vocab, bool] = True,
*,
max_length: int = 10**6,
meta: Dict[str, Any] = {},
create_tokenizer: Optional[Callable[["Language"], Callable[[str], Doc]]] = None,
create_vectors: Optional[Callable[["Vocab"], BaseVectors]] = None,
batch_size: int = 1000,
**kwargs,
) -> None:
"""Initialise a Language object.
vocab (Vocab): A `Vocab` object. If `True`, a vocab is created.
meta (dict): Custom meta data for the Language class. Is written to by
models to add model meta data.
max_length (int): Maximum number of characters in a single text. The
current models may run out memory on extremely long texts, due to
large internal allocations. You should segment these texts into
meaningful units, e.g. paragraphs, subsections etc, before passing
them to spaCy. Default maximum length is 1,000,000 charas (1mb). As
a rule of thumb, if all pipeline components are enabled, spaCy's
default models currently requires roughly 1GB of temporary memory per
100,000 characters in one text.
create_tokenizer (Callable): Function that takes the nlp object and
returns a tokenizer.
batch_size (int): Default batch size for pipe and evaluate.
DOCS: https://spacy.io/api/language#init
"""
# We're only calling this to import all factories provided via entry
# points. The factory decorator applied to these functions takes care
# of the rest.
util.registry._entry_point_factories.get_all()
self._config = DEFAULT_CONFIG.merge(self.default_config)
self._meta = dict(meta)
self._path = None
self._optimizer: Optional[Optimizer] = None
# Component meta and configs are only needed on the instance
self._pipe_meta: Dict[str, "FactoryMeta"] = {} # meta by component
self._pipe_configs: Dict[str, Config] = {} # config by component
if not isinstance(vocab, Vocab) and vocab is not True:
raise ValueError(Errors.E918.format(vocab=vocab, vocab_type=type(Vocab)))
if vocab is True:
vectors_name = meta.get("vectors", {}).get("name")
vocab = create_vocab(self.lang, self.Defaults, vectors_name=vectors_name)
if not create_vectors:
vectors_cfg = {"vectors": self._config["nlp"]["vectors"]}
create_vectors = registry.resolve(vectors_cfg)["vectors"]
vocab.vectors = create_vectors(vocab)
else:
if (self.lang and vocab.lang) and (self.lang != vocab.lang):
raise ValueError(Errors.E150.format(nlp=self.lang, vocab=vocab.lang))
self.vocab: Vocab = vocab
if self.lang is None:
self.lang = self.vocab.lang
self._components: List[Tuple[str, PipeCallable]] = []
self._disabled: Set[str] = set()
self.max_length = max_length
# Create the default tokenizer from the default config
if not create_tokenizer:
tokenizer_cfg = {"tokenizer": self._config["nlp"]["tokenizer"]}
create_tokenizer = registry.resolve(tokenizer_cfg)["tokenizer"]
self.tokenizer = create_tokenizer(self)
self.batch_size = batch_size
self.default_error_handler = raise_error
def __init_subclass__(cls, **kwargs):
super().__init_subclass__(**kwargs)
cls.default_config = DEFAULT_CONFIG.merge(cls.Defaults.config)
cls.default_config["nlp"]["lang"] = cls.lang
@property
def path(self):
return self._path
@property
def meta(self) -> Dict[str, Any]:
"""Custom meta data of the language class. If a model is loaded, this
includes details from the model's meta.json.
RETURNS (Dict[str, Any]): The meta.
DOCS: https://spacy.io/api/language#meta
"""
spacy_version = util.get_minor_version_range(about.__version__)
if self.vocab.lang:
self._meta.setdefault("lang", self.vocab.lang)
else:
self._meta.setdefault("lang", self.lang)
self._meta.setdefault("name", "pipeline")
self._meta.setdefault("version", "0.0.0")
self._meta.setdefault("spacy_version", spacy_version)
self._meta.setdefault("description", "")
self._meta.setdefault("author", "")
self._meta.setdefault("email", "")
self._meta.setdefault("url", "")
self._meta.setdefault("license", "")
self._meta.setdefault("spacy_git_version", GIT_VERSION)
self._meta["vectors"] = {
"width": self.vocab.vectors_length,
"vectors": len(self.vocab.vectors),
"keys": self.vocab.vectors.n_keys,
"name": self.vocab.vectors.name,
"mode": self.vocab.vectors.mode,
}
self._meta["labels"] = dict(self.pipe_labels)
# TODO: Adding this back to prevent breaking people's code etc., but
# we should consider removing it
self._meta["pipeline"] = list(self.pipe_names)
self._meta["components"] = list(self.component_names)
self._meta["disabled"] = list(self.disabled)
return self._meta
@meta.setter
def meta(self, value: Dict[str, Any]) -> None:
self._meta = value
@property
def config(self) -> Config:
"""Trainable config for the current language instance. Includes the
current pipeline components, as well as default training config.
RETURNS (thinc.api.Config): The config.
DOCS: https://spacy.io/api/language#config
"""
self._config.setdefault("nlp", {})
self._config.setdefault("training", {})
self._config["nlp"]["lang"] = self.lang
# We're storing the filled config for each pipeline component and so
# we can populate the config again later
pipeline = {}
score_weights = []
for pipe_name in self.component_names:
pipe_meta = self.get_pipe_meta(pipe_name)
pipe_config = self.get_pipe_config(pipe_name)
pipeline[pipe_name] = {"factory": pipe_meta.factory, **pipe_config}
if pipe_meta.default_score_weights:
score_weights.append(pipe_meta.default_score_weights)
self._config["nlp"]["pipeline"] = list(self.component_names)
self._config["nlp"]["disabled"] = list(self.disabled)
self._config["components"] = pipeline
# We're merging the existing score weights back into the combined
# weights to make sure we're preserving custom settings in the config
# but also reflect updates (e.g. new components added)
prev_weights = self._config["training"].get("score_weights", {})
combined_score_weights = combine_score_weights(score_weights, prev_weights)
self._config["training"]["score_weights"] = combined_score_weights
if not srsly.is_json_serializable(self._config):
raise ValueError(Errors.E961.format(config=self._config))
return self._config
@config.setter
def config(self, value: Config) -> None:
self._config = value
@property
def disabled(self) -> List[str]:
"""Get the names of all disabled components.
RETURNS (List[str]): The disabled components.
"""
# Make sure the disabled components are returned in the order they
# appear in the pipeline (which isn't guaranteed by the set)
names = [name for name, _ in self._components if name in self._disabled]
return SimpleFrozenList(names, error=Errors.E926.format(attr="disabled"))
@property
def factory_names(self) -> List[str]:
"""Get names of all available factories.
RETURNS (List[str]): The factory names.
"""
names = list(self.factories.keys())
return SimpleFrozenList(names)
@property
def components(self) -> List[Tuple[str, PipeCallable]]:
"""Get all (name, component) tuples in the pipeline, including the
currently disabled components.
"""
return SimpleFrozenList(
self._components, error=Errors.E926.format(attr="components")
)
@property
def component_names(self) -> List[str]:
"""Get the names of the available pipeline components. Includes all
active and inactive pipeline components.
RETURNS (List[str]): List of component name strings, in order.
"""
names = [pipe_name for pipe_name, _ in self._components]
return SimpleFrozenList(names, error=Errors.E926.format(attr="component_names"))
@property
def pipeline(self) -> List[Tuple[str, PipeCallable]]:
"""The processing pipeline consisting of (name, component) tuples. The
components are called on the Doc in order as it passes through the
pipeline.
RETURNS (List[Tuple[str, Callable[[Doc], Doc]]]): The pipeline.
"""
pipes = [(n, p) for n, p in self._components if n not in self._disabled]
return SimpleFrozenList(pipes, error=Errors.E926.format(attr="pipeline"))
@property
def pipe_names(self) -> List[str]:
"""Get names of available active pipeline components.
RETURNS (List[str]): List of component name strings, in order.
"""
names = [pipe_name for pipe_name, _ in self.pipeline]
return SimpleFrozenList(names, error=Errors.E926.format(attr="pipe_names"))
@property
def pipe_factories(self) -> Dict[str, str]:
"""Get the component factories for the available pipeline components.
RETURNS (Dict[str, str]): Factory names, keyed by component names.
"""
factories = {}
for pipe_name, pipe in self._components:
factories[pipe_name] = self.get_pipe_meta(pipe_name).factory
return SimpleFrozenDict(factories)
@property
def pipe_labels(self) -> Dict[str, List[str]]:
"""Get the labels set by the pipeline components, if available (if
the component exposes a labels property and the labels are not
hidden).
RETURNS (Dict[str, List[str]]): Labels keyed by component name.
"""
labels = {}
for name, pipe in self._components:
if hasattr(pipe, "hide_labels") and pipe.hide_labels is True:
continue
if hasattr(pipe, "labels"):
labels[name] = list(pipe.labels)
return SimpleFrozenDict(labels)
@classmethod
def has_factory(cls, name: str) -> bool:
"""RETURNS (bool): Whether a factory of that name is registered."""
internal_name = cls.get_factory_name(name)
return name in registry.factories or internal_name in registry.factories
@classmethod
def get_factory_name(cls, name: str) -> str:
"""Get the internal factory name based on the language subclass.
name (str): The factory name.
RETURNS (str): The internal factory name.
"""
if cls.lang is None:
return name
return f"{cls.lang}.{name}"
@classmethod
def get_factory_meta(cls, name: str) -> "FactoryMeta":
"""Get the meta information for a given factory name.
name (str): The component factory name.
RETURNS (FactoryMeta): The meta for the given factory name.
"""
internal_name = cls.get_factory_name(name)
if internal_name in cls._factory_meta:
return cls._factory_meta[internal_name]
if name in cls._factory_meta:
return cls._factory_meta[name]
raise ValueError(Errors.E967.format(meta="factory", name=name))
@classmethod
def set_factory_meta(cls, name: str, value: "FactoryMeta") -> None:
"""Set the meta information for a given factory name.
name (str): The component factory name.
value (FactoryMeta): The meta to set.
"""
cls._factory_meta[cls.get_factory_name(name)] = value
def get_pipe_meta(self, name: str) -> "FactoryMeta":
"""Get the meta information for a given component name.
name (str): The component name.
RETURNS (FactoryMeta): The meta for the given component name.
"""
if name not in self._pipe_meta:
raise ValueError(Errors.E967.format(meta="component", name=name))
return self._pipe_meta[name]
def get_pipe_config(self, name: str) -> Config:
"""Get the config used to create a pipeline component.
name (str): The component name.
RETURNS (Config): The config used to create the pipeline component.
"""
if name not in self._pipe_configs:
raise ValueError(Errors.E960.format(name=name))
pipe_config = self._pipe_configs[name]
return pipe_config
@classmethod
def factory(
cls,
name: str,
*,
default_config: Dict[str, Any] = SimpleFrozenDict(),
assigns: Iterable[str] = SimpleFrozenList(),
requires: Iterable[str] = SimpleFrozenList(),
retokenizes: bool = False,
default_score_weights: Dict[str, Optional[float]] = SimpleFrozenDict(),
func: Optional[Callable] = None,
) -> Callable:
"""Register a new pipeline component factory. Can be used as a decorator
on a function or classmethod, or called as a function with the factory
provided as the func keyword argument. To create a component and add
it to the pipeline, you can use nlp.add_pipe(name).
name (str): The name of the component factory.
default_config (Dict[str, Any]): Default configuration, describing the
default values of the factory arguments.
assigns (Iterable[str]): Doc/Token attributes assigned by this component,
e.g. "token.ent_id". Used for pipeline analysis.
requires (Iterable[str]): Doc/Token attributes required by this component,
e.g. "token.ent_id". Used for pipeline analysis.
retokenizes (bool): Whether the component changes the tokenization.
Used for pipeline analysis.
default_score_weights (Dict[str, Optional[float]]): The scores to report during
training, and their default weight towards the final score used to
select the best model. Weights should sum to 1.0 per component and
will be combined and normalized for the whole pipeline. If None,
the score won't be shown in the logs or be weighted.
func (Optional[Callable]): Factory function if not used as a decorator.
DOCS: https://spacy.io/api/language#factory
"""
if not isinstance(name, str):
raise ValueError(Errors.E963.format(decorator="factory"))
if "." in name:
raise ValueError(Errors.E853.format(name=name))
if not isinstance(default_config, dict):
err = Errors.E962.format(
style="default config", name=name, cfg_type=type(default_config)
)
raise ValueError(err)
def add_factory(factory_func: Callable) -> Callable:
internal_name = cls.get_factory_name(name)
if internal_name in registry.factories:
# We only check for the internal name here it's okay if it's a
# subclass and the base class has a factory of the same name. We
# also only raise if the function is different to prevent raising
# if module is reloaded.
existing_func = registry.factories.get(internal_name)
if not util.is_same_func(factory_func, existing_func):
err = Errors.E004.format(
name=name, func=existing_func, new_func=factory_func
)
raise ValueError(err)
arg_names = util.get_arg_names(factory_func)
if "nlp" not in arg_names or "name" not in arg_names:
raise ValueError(Errors.E964.format(name=name))
# Officially register the factory so we can later call
# registry.resolve and refer to it in the config as
# @factories = "spacy.Language.xyz". We use the class name here so
# different classes can have different factories.
registry.factories.register(internal_name, func=factory_func)
factory_meta = FactoryMeta(
factory=name,
default_config=default_config,
assigns=validate_attrs(assigns),
requires=validate_attrs(requires),
scores=list(default_score_weights.keys()),
default_score_weights=default_score_weights,
retokenizes=retokenizes,
)
cls.set_factory_meta(name, factory_meta)
# We're overwriting the class attr with a frozen dict to handle
# backwards-compat (writing to Language.factories directly). This
# wouldn't work with an instance property and just produce a
# confusing error here we can show a custom error
cls.factories = SimpleFrozenDict(
registry.factories.get_all(), error=Errors.E957
)
return factory_func
if func is not None: # Support non-decorator use cases
return add_factory(func)
return add_factory
@classmethod
def component(
cls,
name: str,
*,
assigns: Iterable[str] = SimpleFrozenList(),
requires: Iterable[str] = SimpleFrozenList(),
retokenizes: bool = False,
func: Optional[PipeCallable] = None,
) -> Callable[..., Any]:
"""Register a new pipeline component. Can be used for stateless function
components that don't require a separate factory. Can be used as a
decorator on a function or classmethod, or called as a function with the
factory provided as the func keyword argument. To create a component and
add it to the pipeline, you can use nlp.add_pipe(name).
name (str): The name of the component factory.
assigns (Iterable[str]): Doc/Token attributes assigned by this component,
e.g. "token.ent_id". Used for pipeline analysis.
requires (Iterable[str]): Doc/Token attributes required by this component,
e.g. "token.ent_id". Used for pipeline analysis.
retokenizes (bool): Whether the component changes the tokenization.
Used for pipeline analysis.
func (Optional[Callable[[Doc], Doc]): Factory function if not used as a decorator.
DOCS: https://spacy.io/api/language#component
"""
if name is not None:
if not isinstance(name, str):
raise ValueError(Errors.E963.format(decorator="component"))
if "." in name:
raise ValueError(Errors.E853.format(name=name))
component_name = name if name is not None else util.get_object_name(func)
def add_component(component_func: PipeCallable) -> Callable:
if isinstance(func, type): # function is a class
raise ValueError(Errors.E965.format(name=component_name))
def factory_func(nlp, name: str) -> PipeCallable:
return component_func
internal_name = cls.get_factory_name(name)
if internal_name in registry.factories:
# We only check for the internal name here it's okay if it's a
# subclass and the base class has a factory of the same name. We
# also only raise if the function is different to prevent raising
# if module is reloaded. It's hacky, but we need to check the
# existing functure for a closure and whether that's identical
# to the component function (because factory_func created above
# will always be different, even for the same function)
existing_func = registry.factories.get(internal_name)
closure = existing_func.__closure__
wrapped = [c.cell_contents for c in closure][0] if closure else None
if util.is_same_func(wrapped, component_func):
factory_func = existing_func # noqa: F811
cls.factory(
component_name,
assigns=assigns,
requires=requires,
retokenizes=retokenizes,
func=factory_func,
)
return component_func
if func is not None: # Support non-decorator use cases
return add_component(func)
return add_component
def analyze_pipes(
self,
*,
keys: List[str] = ["assigns", "requires", "scores", "retokenizes"],
pretty: bool = False,
) -> Optional[Dict[str, Any]]:
"""Analyze the current pipeline components, print a summary of what
they assign or require and check that all requirements are met.
keys (List[str]): The meta values to display in the table. Corresponds
to values in FactoryMeta, defined by @Language.factory decorator.
pretty (bool): Pretty-print the results.
RETURNS (dict): The data.
"""
analysis = analyze_pipes(self, keys=keys)
if pretty:
print_pipe_analysis(analysis, keys=keys)
return analysis
def get_pipe(self, name: str) -> PipeCallable:
"""Get a pipeline component for a given component name.
name (str): Name of pipeline component to get.
RETURNS (callable): The pipeline component.
DOCS: https://spacy.io/api/language#get_pipe
"""
for pipe_name, component in self._components:
if pipe_name == name:
return component
raise KeyError(Errors.E001.format(name=name, opts=self.component_names))
def create_pipe(
self,
factory_name: str,
name: Optional[str] = None,
*,
config: Dict[str, Any] = SimpleFrozenDict(),
raw_config: Optional[Config] = None,
validate: bool = True,
) -> PipeCallable:
"""Create a pipeline component. Mostly used internally. To create and
add a component to the pipeline, you can use nlp.add_pipe.
factory_name (str): Name of component factory.
name (Optional[str]): Optional name to assign to component instance.
Defaults to factory name if not set.
config (Dict[str, Any]): Config parameters to use for this component.
Will be merged with default config, if available.
raw_config (Optional[Config]): Internals: the non-interpolated config.
validate (bool): Whether to validate the component config against the
arguments and types expected by the factory.
RETURNS (Callable[[Doc], Doc]): The pipeline component.
DOCS: https://spacy.io/api/language#create_pipe
"""
name = name if name is not None else factory_name
if not isinstance(config, dict):
err = Errors.E962.format(style="config", name=name, cfg_type=type(config))
raise ValueError(err)
if not srsly.is_json_serializable(config):
raise ValueError(Errors.E961.format(config=config))
if not self.has_factory(factory_name):
err = Errors.E002.format(
name=factory_name,
opts=", ".join(self.factory_names),
method="create_pipe",
lang=util.get_object_name(self),
lang_code=self.lang,
)
raise ValueError(err)
pipe_meta = self.get_factory_meta(factory_name)
# This is unideal, but the alternative would mean you always need to
# specify the full config settings, which is not really viable.
if pipe_meta.default_config:
config = Config(pipe_meta.default_config).merge(config)
internal_name = self.get_factory_name(factory_name)
# If the language-specific factory doesn't exist, try again with the
# not-specific name
if internal_name not in registry.factories:
internal_name = factory_name
# The name allows components to know their pipe name and use it in the
# losses etc. (even if multiple instances of the same factory are used)
config = {"nlp": self, "name": name, **config, "@factories": internal_name}
# We need to create a top-level key because Thinc doesn't allow resolving
# top-level references to registered functions. Also gives nicer errors.
cfg = {factory_name: config}
# We're calling the internal _fill here to avoid constructing the
# registered functions twice
resolved = registry.resolve(cfg, validate=validate)
filled = registry.fill({"cfg": cfg[factory_name]}, validate=validate)["cfg"]
filled = Config(filled)
filled["factory"] = factory_name
filled.pop("@factories", None)
# Remove the extra values we added because we don't want to keep passing
# them around, copying them etc.
filled.pop("nlp", None)
filled.pop("name", None)
# Merge the final filled config with the raw config (including non-
# interpolated variables)
if raw_config:
filled = filled.merge(raw_config)
self._pipe_configs[name] = filled
return resolved[factory_name]
def create_pipe_from_source(
self, source_name: str, source: "Language", *, name: str
) -> Tuple[PipeCallable, str]:
"""Create a pipeline component by copying it from an existing model.
source_name (str): Name of the component in the source pipeline.
source (Language): The source nlp object to copy from.
name (str): Optional alternative name to use in current pipeline.
RETURNS (Tuple[Callable[[Doc], Doc], str]): The component and its factory name.
"""
# Check source type
if not isinstance(source, Language):
raise ValueError(Errors.E945.format(name=source_name, source=type(source)))
if self.vocab.vectors != source.vocab.vectors:
warnings.warn(Warnings.W113.format(name=source_name))
if source_name not in source.component_names:
raise KeyError(
Errors.E944.format(
name=source_name,
model=f"{source.meta['lang']}_{source.meta['name']}",
opts=", ".join(source.component_names),
)
)
pipe = source.get_pipe(source_name)
# There is no actual solution here. Either the component has the right
# name for the source pipeline or the component has the right name for
# the current pipeline. This prioritizes the current pipeline.
if hasattr(pipe, "name"):
pipe.name = name
# Make sure the source config is interpolated so we don't end up with
# orphaned variables in our final config
source_config = source.config.interpolate()
pipe_config = util.copy_config(source_config["components"][source_name])
self._pipe_configs[name] = pipe_config
if self.vocab.strings != source.vocab.strings:
for s in source.vocab.strings:
self.vocab.strings.add(s)
return pipe, pipe_config["factory"]
def add_pipe(
self,
factory_name: str,
name: Optional[str] = None,
*,
before: Optional[Union[str, int]] = None,
after: Optional[Union[str, int]] = None,
first: Optional[bool] = None,
last: Optional[bool] = None,
source: Optional["Language"] = None,
config: Dict[str, Any] = SimpleFrozenDict(),
raw_config: Optional[Config] = None,
validate: bool = True,
) -> PipeCallable:
"""Add a component to the processing pipeline. Valid components are
callables that take a `Doc` object, modify it and return it. Only one
of before/after/first/last can be set. Default behaviour is "last".
factory_name (str): Name of the component factory.
name (str): Name of pipeline component. Overwrites existing
component.name attribute if available. If no name is set and
the component exposes no name attribute, component.__name__ is
used. An error is raised if a name already exists in the pipeline.
before (Union[str, int]): Name or index of the component to insert new
component directly before.
after (Union[str, int]): Name or index of the component to insert new
component directly after.
first (bool): If True, insert component first in the pipeline.
last (bool): If True, insert component last in the pipeline.
source (Language): Optional loaded nlp object to copy the pipeline
component from.
config (Dict[str, Any]): Config parameters to use for this component.
Will be merged with default config, if available.
raw_config (Optional[Config]): Internals: the non-interpolated config.
validate (bool): Whether to validate the component config against the
arguments and types expected by the factory.
RETURNS (Callable[[Doc], Doc]): The pipeline component.
DOCS: https://spacy.io/api/language#add_pipe
"""
if not isinstance(factory_name, str):
bad_val = repr(factory_name)
err = Errors.E966.format(component=bad_val, name=name)
raise ValueError(err)
name = name if name is not None else factory_name
if name in self.component_names:
raise ValueError(Errors.E007.format(name=name, opts=self.component_names))
# Overriding pipe name in the config is not supported and will be ignored.
if "name" in config:
warnings.warn(Warnings.W119.format(name_in_config=config.pop("name")))
if source is not None:
# We're loading the component from a model. After loading the
# component, we know its real factory name
pipe_component, factory_name = self.create_pipe_from_source(
factory_name, source, name=name
)
else:
pipe_component = self.create_pipe(
factory_name,
name=name,
config=config,
raw_config=raw_config,
validate=validate,
)
pipe_index = self._get_pipe_index(before, after, first, last)
self._pipe_meta[name] = self.get_factory_meta(factory_name)
self._components.insert(pipe_index, (name, pipe_component))
self._link_components()
return pipe_component
def _get_pipe_index(
self,
before: Optional[Union[str, int]] = None,
after: Optional[Union[str, int]] = None,
first: Optional[bool] = None,
last: Optional[bool] = None,
) -> int:
"""Determine where to insert a pipeline component based on the before/
after/first/last values.
before (str): Name or index of the component to insert directly before.
after (str): Name or index of component to insert directly after.
first (bool): If True, insert component first in the pipeline.
last (bool): If True, insert component last in the pipeline.
RETURNS (int): The index of the new pipeline component.
"""
all_args = {"before": before, "after": after, "first": first, "last": last}
if sum(arg is not None for arg in [before, after, first, last]) >= 2:
raise ValueError(
Errors.E006.format(args=all_args, opts=self.component_names)
)
if last or not any(value is not None for value in [first, before, after]):
return len(self._components)
elif first:
return 0
elif isinstance(before, str):
if before not in self.component_names:
raise ValueError(
Errors.E001.format(name=before, opts=self.component_names)
)
return self.component_names.index(before)
elif isinstance(after, str):
if after not in self.component_names:
raise ValueError(
Errors.E001.format(name=after, opts=self.component_names)
)
return self.component_names.index(after) + 1
# We're only accepting indices referring to components that exist
# (can't just do isinstance here because bools are instance of int, too)
elif type(before) == int:
if before >= len(self._components) or before < 0:
err = Errors.E959.format(
dir="before", idx=before, opts=self.component_names
)
raise ValueError(err)
return before
elif type(after) == int:
if after >= len(self._components) or after < 0:
err = Errors.E959.format(
dir="after", idx=after, opts=self.component_names
)
raise ValueError(err)
return after + 1
raise ValueError(Errors.E006.format(args=all_args, opts=self.component_names))
def has_pipe(self, name: str) -> bool:
"""Check if a component name is present in the pipeline. Equivalent to
`name in nlp.pipe_names`.
name (str): Name of the component.
RETURNS (bool): Whether a component of the name exists in the pipeline.
DOCS: https://spacy.io/api/language#has_pipe
"""
return name in self.pipe_names
def replace_pipe(
self,
name: str,
factory_name: str,
*,
config: Dict[str, Any] = SimpleFrozenDict(),
validate: bool = True,
) -> PipeCallable:
"""Replace a component in the pipeline.
name (str): Name of the component to replace.
factory_name (str): Factory name of replacement component.
config (Optional[Dict[str, Any]]): Config parameters to use for this
component. Will be merged with default config, if available.
validate (bool): Whether to validate the component config against the
arguments and types expected by the factory.
RETURNS (Callable[[Doc], Doc]): The new pipeline component.
DOCS: https://spacy.io/api/language#replace_pipe
"""
if name not in self.component_names:
raise ValueError(Errors.E001.format(name=name, opts=self.pipe_names))
if hasattr(factory_name, "__call__"):
err = Errors.E968.format(component=repr(factory_name), name=name)
raise ValueError(err)
# We need to delegate to Language.add_pipe here instead of just writing
# to Language.pipeline to make sure the configs are handled correctly
pipe_index = self.component_names.index(name)
self.remove_pipe(name)
if not len(self._components) or pipe_index == len(self._components):
# we have no components to insert before/after, or we're replacing the last component
return self.add_pipe(
factory_name, name=name, config=config, validate=validate
)
else:
return self.add_pipe(
factory_name,
name=name,
before=pipe_index,
config=config,
validate=validate,
)
def rename_pipe(self, old_name: str, new_name: str) -> None:
"""Rename a pipeline component.
old_name (str): Name of the component to rename.
new_name (str): New name of the component.
DOCS: https://spacy.io/api/language#rename_pipe
"""
if old_name not in self.component_names:
raise ValueError(
Errors.E001.format(name=old_name, opts=self.component_names)
)
if new_name in self.component_names:
raise ValueError(
Errors.E007.format(name=new_name, opts=self.component_names)
)
i = self.component_names.index(old_name)
self._components[i] = (new_name, self._components[i][1])
self._pipe_meta[new_name] = self._pipe_meta.pop(old_name)
self._pipe_configs[new_name] = self._pipe_configs.pop(old_name)
# Make sure [initialize] config is adjusted
if old_name in self._config["initialize"]["components"]:
init_cfg = self._config["initialize"]["components"].pop(old_name)
self._config["initialize"]["components"][new_name] = init_cfg
self._link_components()
def remove_pipe(self, name: str) -> Tuple[str, PipeCallable]:
"""Remove a component from the pipeline.
name (str): Name of the component to remove.
RETURNS (Tuple[str, Callable[[Doc], Doc]]): A `(name, component)` tuple of the removed component.
DOCS: https://spacy.io/api/language#remove_pipe
"""
if name not in self.component_names:
raise ValueError(Errors.E001.format(name=name, opts=self.component_names))
removed = self._components.pop(self.component_names.index(name))
# We're only removing the component itself from the metas/configs here
# because factory may be used for something else
self._pipe_meta.pop(name)
self._pipe_configs.pop(name)
self.meta.get("_sourced_vectors_hashes", {}).pop(name, None)
# Make sure name is removed from the [initialize] config
if name in self._config["initialize"]["components"]:
self._config["initialize"]["components"].pop(name)
# Make sure the name is also removed from the set of disabled components
if name in self.disabled:
self._disabled.remove(name)
self._link_components()
return removed
def disable_pipe(self, name: str) -> None:
"""Disable a pipeline component. The component will still exist on
the nlp object, but it won't be run as part of the pipeline. Does
nothing if the component is already disabled.
name (str): The name of the component to disable.
"""
if name not in self.component_names:
raise ValueError(Errors.E001.format(name=name, opts=self.component_names))
self._disabled.add(name)
def enable_pipe(self, name: str) -> None:
"""Enable a previously disabled pipeline component so it's run as part
of the pipeline. Does nothing if the component is already enabled.
name (str): The name of the component to enable.
"""
if name not in self.component_names:
raise ValueError(Errors.E001.format(name=name, opts=self.component_names))
if name in self.disabled:
self._disabled.remove(name)
def __call__(
self,
text: Union[str, Doc],
*,
disable: Iterable[str] = SimpleFrozenList(),
component_cfg: Optional[Dict[str, Dict[str, Any]]] = None,
) -> Doc:
"""Apply the pipeline to some text. The text can span multiple sentences,
and can contain arbitrary whitespace. Alignment into the original string
is preserved.
text (Union[str, Doc]): If `str`, the text to be processed. If `Doc`,
the doc will be passed directly to the pipeline, skipping
`Language.make_doc`.
disable (List[str]): Names of the pipeline components to disable.
component_cfg (Dict[str, dict]): An optional dictionary with extra
keyword arguments for specific components.
RETURNS (Doc): A container for accessing the annotations.
DOCS: https://spacy.io/api/language#call
"""
doc = self._ensure_doc(text)
if component_cfg is None:
component_cfg = {}
for name, proc in self.pipeline:
if name in disable:
continue
if not hasattr(proc, "__call__"):
raise ValueError(Errors.E003.format(component=type(proc), name=name))
error_handler = self.default_error_handler
if hasattr(proc, "get_error_handler"):
error_handler = proc.get_error_handler()
try:
doc = proc(doc, **component_cfg.get(name, {})) # type: ignore[call-arg]
except KeyError as e:
# This typically happens if a component is not initialized
raise ValueError(Errors.E109.format(name=name)) from e
except Exception as e:
error_handler(name, proc, [doc], e)
if not isinstance(doc, Doc):
raise ValueError(Errors.E005.format(name=name, returned_type=type(doc)))
return doc
def disable_pipes(self, *names) -> "DisabledPipes":
"""Disable one or more pipeline components. If used as a context
manager, the pipeline will be restored to the initial state at the end
of the block. Otherwise, a DisabledPipes object is returned, that has
a `.restore()` method you can use to undo your changes.
This method has been deprecated since 3.0
"""
warnings.warn(Warnings.W096, DeprecationWarning)
if len(names) == 1 and isinstance(names[0], (list, tuple)):
names = names[0] # type: ignore[assignment] # support list of names instead of spread
return self.select_pipes(disable=names)
def select_pipes(
self,
*,
disable: Optional[Union[str, Iterable[str]]] = None,
enable: Optional[Union[str, Iterable[str]]] = None,
) -> "DisabledPipes":
"""Disable one or more pipeline components. If used as a context
manager, the pipeline will be restored to the initial state at the end
of the block. Otherwise, a DisabledPipes object is returned, that has
a `.restore()` method you can use to undo your changes.
disable (str or iterable): The name(s) of the pipes to disable
enable (str or iterable): The name(s) of the pipes to enable - all others will be disabled
DOCS: https://spacy.io/api/language#select_pipes
"""
if enable is None and disable is None:
raise ValueError(Errors.E991)
if isinstance(disable, str):
disable = [disable]
if enable is not None:
if isinstance(enable, str):
enable = [enable]
to_disable = [pipe for pipe in self.pipe_names if pipe not in enable]
# raise an error if the enable and disable keywords are not consistent
if disable is not None and disable != to_disable:
raise ValueError(
Errors.E992.format(
enable=enable, disable=disable, names=self.pipe_names
)
)
disable = to_disable
assert disable is not None
# DisabledPipes will restore the pipes in 'disable' when it's done, so we need to exclude
# those pipes that were already disabled.
disable = [d for d in disable if d not in self._disabled]
return DisabledPipes(self, disable)
def make_doc(self, text: str) -> Doc:
"""Turn a text into a Doc object.
text (str): The text to process.
RETURNS (Doc): The processed doc.
"""
if len(text) > self.max_length:
raise ValueError(
Errors.E088.format(length=len(text), max_length=self.max_length)
)
return self.tokenizer(text)
def _ensure_doc(self, doc_like: Union[str, Doc, bytes]) -> Doc:
"""Create a Doc if need be, or raise an error if the input is not
a Doc, string, or a byte array (generated by Doc.to_bytes())."""
if isinstance(doc_like, Doc):
return doc_like
if isinstance(doc_like, str):
return self.make_doc(doc_like)
if isinstance(doc_like, bytes):
return Doc(self.vocab).from_bytes(doc_like)
raise ValueError(Errors.E1041.format(type=type(doc_like)))
def _ensure_doc_with_context(
self, doc_like: Union[str, Doc, bytes], context: _AnyContext
) -> Doc:
"""Call _ensure_doc to generate a Doc and set its context object."""
doc = self._ensure_doc(doc_like)
doc._context = context
return doc
def update(
self,
examples: Iterable[Example],
_: Optional[Any] = None,
*,
drop: float = 0.0,
sgd: Optional[Optimizer] = None,
losses: Optional[Dict[str, float]] = None,
component_cfg: Optional[Dict[str, Dict[str, Any]]] = None,
exclude: Iterable[str] = SimpleFrozenList(),
annotates: Iterable[str] = SimpleFrozenList(),
):
"""Update the models in the pipeline.
examples (Iterable[Example]): A batch of examples
_: Should not be set - serves to catch backwards-incompatible scripts.
drop (float): The dropout rate.
sgd (Optimizer): An optimizer.
losses (Dict[str, float]): Dictionary to update with the loss, keyed by
component.
component_cfg (Dict[str, Dict]): Config parameters for specific pipeline
components, keyed by component name.
exclude (Iterable[str]): Names of components that shouldn't be updated.
annotates (Iterable[str]): Names of components that should set
annotations on the predicted examples after updating.
RETURNS (Dict[str, float]): The updated losses dictionary
DOCS: https://spacy.io/api/language#update
"""
if _ is not None:
raise ValueError(Errors.E989)
if losses is None:
losses = {}
if isinstance(examples, list) and len(examples) == 0:
return losses
validate_examples(examples, "Language.update")
examples = _copy_examples(examples)
if sgd is None:
if self._optimizer is None:
self._optimizer = self.create_optimizer()
sgd = self._optimizer
if component_cfg is None:
component_cfg = {}
pipe_kwargs = {}
for i, (name, proc) in enumerate(self.pipeline):
component_cfg.setdefault(name, {})
pipe_kwargs[name] = deepcopy(component_cfg[name])
component_cfg[name].setdefault("drop", drop)
pipe_kwargs[name].setdefault("batch_size", self.batch_size)
for name, proc in self.pipeline:
# ignore statements are used here because mypy ignores hasattr
if name not in exclude and hasattr(proc, "update"):
proc.update(examples, sgd=None, losses=losses, **component_cfg[name]) # type: ignore
if sgd not in (None, False):
if (
name not in exclude
and isinstance(proc, ty.TrainableComponent)
and proc.is_trainable
and proc.model not in (True, False, None)
):
proc.finish_update(sgd)
if name in annotates:
for doc, eg in zip(
_pipe(
(eg.predicted for eg in examples),
proc=proc,
name=name,
default_error_handler=self.default_error_handler,
kwargs=pipe_kwargs[name],
),
examples,
):
eg.predicted = doc
return losses
def rehearse(
self,
examples: Iterable[Example],
*,
sgd: Optional[Optimizer] = None,
losses: Optional[Dict[str, float]] = None,
component_cfg: Optional[Dict[str, Dict[str, Any]]] = None,
exclude: Iterable[str] = SimpleFrozenList(),
) -> Dict[str, float]:
"""Make a "rehearsal" update to the models in the pipeline, to prevent
forgetting. Rehearsal updates run an initial copy of the model over some
data, and update the model so its current predictions are more like the
initial ones. This is useful for keeping a pretrained model on-track,
even if you're updating it with a smaller set of examples.
examples (Iterable[Example]): A batch of `Example` objects.
sgd (Optional[Optimizer]): An optimizer.
component_cfg (Dict[str, Dict]): Config parameters for specific pipeline
components, keyed by component name.
exclude (Iterable[str]): Names of components that shouldn't be updated.
RETURNS (dict): Results from the update.
EXAMPLE:
>>> raw_text_batches = minibatch(raw_texts)
>>> for labelled_batch in minibatch(examples):
>>> nlp.update(labelled_batch)
>>> raw_batch = [Example.from_dict(nlp.make_doc(text), {}) for text in next(raw_text_batches)]
>>> nlp.rehearse(raw_batch)
DOCS: https://spacy.io/api/language#rehearse
"""
if losses is None:
losses = {}
if isinstance(examples, list) and len(examples) == 0:
return losses
validate_examples(examples, "Language.rehearse")
if sgd is None:
if self._optimizer is None:
self._optimizer = self.create_optimizer()
sgd = self._optimizer
pipes = list(self.pipeline)
random.shuffle(pipes)
if component_cfg is None:
component_cfg = {}
grads = {}
def get_grads(key, W, dW):
grads[key] = (W, dW)
return W, dW
get_grads.learn_rate = sgd.learn_rate # type: ignore[attr-defined, union-attr]
get_grads.b1 = sgd.b1 # type: ignore[attr-defined, union-attr]
get_grads.b2 = sgd.b2 # type: ignore[attr-defined, union-attr]
for name, proc in pipes:
if name in exclude or not hasattr(proc, "rehearse"):
continue
grads = {}
proc.rehearse( # type: ignore[attr-defined]
examples, sgd=get_grads, losses=losses, **component_cfg.get(name, {})
)
for key, (W, dW) in grads.items():
sgd(key, W, dW) # type: ignore[call-arg, misc]
return losses
def begin_training(
self,
get_examples: Optional[Callable[[], Iterable[Example]]] = None,
*,
sgd: Optional[Optimizer] = None,
) -> Optimizer:
warnings.warn(Warnings.W089, DeprecationWarning)
return self.initialize(get_examples, sgd=sgd)
def initialize(
self,
get_examples: Optional[Callable[[], Iterable[Example]]] = None,
*,
sgd: Optional[Optimizer] = None,
) -> Optimizer:
"""Initialize the pipe for training, using data examples if available.
get_examples (Callable[[], Iterable[Example]]): Optional function that
returns gold-standard Example objects.
sgd (Optional[Optimizer]): An optimizer to use for updates. If not
provided, will be created using the .create_optimizer() method.
RETURNS (thinc.api.Optimizer): The optimizer.
DOCS: https://spacy.io/api/language#initialize
"""
if get_examples is None:
util.logger.debug(
"No 'get_examples' callback provided to 'Language.initialize', creating dummy examples"
)
doc = Doc(self.vocab, words=["x", "y", "z"])
def get_examples():
return [Example.from_dict(doc, {})]
if not hasattr(get_examples, "__call__"):
err = Errors.E930.format(
method="Language.initialize", obj=type(get_examples)
)
raise TypeError(err)
# Make sure the config is interpolated so we can resolve subsections
config = self.config.interpolate()
# These are the settings provided in the [initialize] block in the config
I = registry.resolve(config["initialize"], schema=ConfigSchemaInit)
before_init = I["before_init"]
if before_init is not None:
before_init(self)
try:
init_vocab(
self, data=I["vocab_data"], lookups=I["lookups"], vectors=I["vectors"]
)
except IOError:
raise IOError(Errors.E884.format(vectors=I["vectors"]))
if self.vocab.vectors.shape[1] >= 1:
ops = get_current_ops()
self.vocab.vectors.to_ops(ops)
if hasattr(self.tokenizer, "initialize"):
tok_settings = validate_init_settings(
self.tokenizer.initialize, # type: ignore[union-attr]
I["tokenizer"],
section="tokenizer",
name="tokenizer",
)
self.tokenizer.initialize(get_examples, nlp=self, **tok_settings) # type: ignore[union-attr]
for name, proc in self.pipeline:
if isinstance(proc, ty.InitializableComponent):
p_settings = I["components"].get(name, {})
p_settings = validate_init_settings(
proc.initialize, p_settings, section="components", name=name
)
proc.initialize(get_examples, nlp=self, **p_settings)
pretrain_cfg = config.get("pretraining")
if pretrain_cfg:
P = registry.resolve(pretrain_cfg, schema=ConfigSchemaPretrain)
init_tok2vec(self, P, I)
self._link_components()
self._optimizer = sgd
if sgd is not None:
self._optimizer = sgd
elif self._optimizer is None:
self._optimizer = self.create_optimizer()
after_init = I["after_init"]
if after_init is not None:
after_init(self)
return self._optimizer
def resume_training(self, *, sgd: Optional[Optimizer] = None) -> Optimizer:
"""Continue training a pretrained model.
Create and return an optimizer, and initialize "rehearsal" for any pipeline
component that has a .rehearse() method. Rehearsal is used to prevent
models from "forgetting" their initialized "knowledge". To perform
rehearsal, collect samples of text you want the models to retain performance
on, and call nlp.rehearse() with a batch of Example objects.
RETURNS (Optimizer): The optimizer.
DOCS: https://spacy.io/api/language#resume_training
"""
ops = get_current_ops()
if self.vocab.vectors.shape[1] >= 1:
self.vocab.vectors.to_ops(ops)
for name, proc in self.pipeline:
if hasattr(proc, "_rehearsal_model"):
proc._rehearsal_model = deepcopy(proc.model) # type: ignore[attr-defined]
if sgd is not None:
self._optimizer = sgd
elif self._optimizer is None:
self._optimizer = self.create_optimizer()
return self._optimizer
def set_error_handler(
self,
error_handler: Callable[[str, PipeCallable, List[Doc], Exception], NoReturn],
):
"""Set an error handler object for all the components in the pipeline
that implement a set_error_handler function.
error_handler (Callable[[str, Callable[[Doc], Doc], List[Doc], Exception], NoReturn]):
Function that deals with a failing batch of documents. This callable
function should take in the component's name, the component itself,
the offending batch of documents, and the exception that was thrown.
DOCS: https://spacy.io/api/language#set_error_handler
"""
self.default_error_handler = error_handler
for name, pipe in self.pipeline:
if hasattr(pipe, "set_error_handler"):
pipe.set_error_handler(error_handler)
def evaluate(
self,
examples: Iterable[Example],
*,
batch_size: Optional[int] = None,
scorer: Optional[Scorer] = None,
component_cfg: Optional[Dict[str, Dict[str, Any]]] = None,
scorer_cfg: Optional[Dict[str, Any]] = None,
per_component: bool = False,
) -> Dict[str, Any]:
"""Evaluate a model's pipeline components.
examples (Iterable[Example]): `Example` objects.
batch_size (Optional[int]): Batch size to use.
scorer (Optional[Scorer]): Scorer to use. If not passed in, a new one
will be created.
component_cfg (dict): An optional dictionary with extra keyword
arguments for specific components.
scorer_cfg (dict): An optional dictionary with extra keyword arguments
for the scorer.
per_component (bool): Whether to return the scores keyed by component
name. Defaults to False.
RETURNS (Scorer): The scorer containing the evaluation results.
DOCS: https://spacy.io/api/language#evaluate
"""
examples = list(examples)
validate_examples(examples, "Language.evaluate")
examples = _copy_examples(examples)
if batch_size is None:
batch_size = self.batch_size
if component_cfg is None:
component_cfg = {}
if scorer_cfg is None:
scorer_cfg = {}
if scorer is None:
kwargs = dict(scorer_cfg)
kwargs.setdefault("nlp", self)
scorer = Scorer(**kwargs)
# reset annotation in predicted docs and time tokenization
start_time = timer()
# this is purely for timing
for eg in examples:
self.make_doc(eg.reference.text)
# apply all pipeline components
docs = self.pipe(
(eg.predicted for eg in examples),
batch_size=batch_size,
component_cfg=component_cfg,
)
for eg, doc in zip(examples, docs):
eg.predicted = doc
end_time = timer()
results = scorer.score(examples, per_component=per_component)
n_words = sum(len(eg.predicted) for eg in examples)
results["speed"] = n_words / (end_time - start_time)
return results
def create_optimizer(self):
"""Create an optimizer, usually using the [training.optimizer] config."""
subconfig = {"optimizer": self.config["training"]["optimizer"]}
return registry.resolve(subconfig)["optimizer"]
@contextmanager
def use_params(self, params: Optional[dict]):
"""Replace weights of models in the pipeline with those provided in the
params dictionary. Can be used as a contextmanager, in which case,
models go back to their original weights after the block.
params (dict): A dictionary of parameters keyed by model ID.
EXAMPLE:
>>> with nlp.use_params(optimizer.averages):
>>> nlp.to_disk("/tmp/checkpoint")
DOCS: https://spacy.io/api/language#use_params
"""
if not params:
yield
else:
contexts = [
pipe.use_params(params) # type: ignore[attr-defined]
for name, pipe in self.pipeline
if hasattr(pipe, "use_params") and hasattr(pipe, "model")
]
# TODO: Having trouble with contextlib
# Workaround: these aren't actually context managers atm.
for context in contexts:
try:
next(context)
except StopIteration:
pass
yield
for context in contexts:
try:
next(context)
except StopIteration:
pass
@overload
def pipe(
self,
texts: Iterable[Union[str, Doc]],
*,
as_tuples: Literal[False] = ...,
batch_size: Optional[int] = ...,
disable: Iterable[str] = ...,
component_cfg: Optional[Dict[str, Dict[str, Any]]] = ...,
n_process: int = ...,
) -> Iterator[Doc]:
...
@overload
def pipe( # noqa: F811
self,
texts: Iterable[Tuple[Union[str, Doc], _AnyContext]],
*,
as_tuples: Literal[True] = ...,
batch_size: Optional[int] = ...,
disable: Iterable[str] = ...,
component_cfg: Optional[Dict[str, Dict[str, Any]]] = ...,
n_process: int = ...,
) -> Iterator[Tuple[Doc, _AnyContext]]:
...
def pipe( # noqa: F811
self,
texts: Union[
Iterable[Union[str, Doc]], Iterable[Tuple[Union[str, Doc], _AnyContext]]
],
*,
as_tuples: bool = False,
batch_size: Optional[int] = None,
disable: Iterable[str] = SimpleFrozenList(),
component_cfg: Optional[Dict[str, Dict[str, Any]]] = None,
n_process: int = 1,
) -> Union[Iterator[Doc], Iterator[Tuple[Doc, _AnyContext]]]:
"""Process texts as a stream, and yield `Doc` objects in order.
texts (Iterable[Union[str, Doc]]): A sequence of texts or docs to
process.
as_tuples (bool): If set to True, inputs should be a sequence of
(text, context) tuples. Output will then be a sequence of
(doc, context) tuples. Defaults to False.
batch_size (Optional[int]): The number of texts to buffer.
disable (List[str]): Names of the pipeline components to disable.
component_cfg (Dict[str, Dict]): An optional dictionary with extra keyword
arguments for specific components.
n_process (int): Number of processors to process texts. If -1, set `multiprocessing.cpu_count()`.
YIELDS (Doc): Documents in the order of the original text.
DOCS: https://spacy.io/api/language#pipe
"""
if as_tuples:
texts = cast(Iterable[Tuple[Union[str, Doc], _AnyContext]], texts)
docs_with_contexts = (
self._ensure_doc_with_context(text, context) for text, context in texts
)
docs = self.pipe(
docs_with_contexts,
batch_size=batch_size,
disable=disable,
n_process=n_process,
component_cfg=component_cfg,
)
for doc in docs:
context = doc._context
doc._context = None
yield (doc, context)
return
texts = cast(Iterable[Union[str, Doc]], texts)
# Set argument defaults
if n_process == -1:
n_process = mp.cpu_count()
if component_cfg is None:
component_cfg = {}
if batch_size is None:
batch_size = self.batch_size
pipes = (
[]
) # contains functools.partial objects to easily create multiprocess worker.
for name, proc in self.pipeline:
if name in disable:
continue
kwargs = component_cfg.get(name, {})
# Allow component_cfg to overwrite the top-level kwargs.
kwargs.setdefault("batch_size", batch_size)
f = functools.partial(
_pipe,
proc=proc,
name=name,
kwargs=kwargs,
default_error_handler=self.default_error_handler,
)
pipes.append(f)
if n_process != 1:
if self._has_gpu_model(disable):
warnings.warn(Warnings.W114)
docs = self._multiprocessing_pipe(texts, pipes, n_process, batch_size)
else:
# if n_process == 1, no processes are forked.
docs = (self._ensure_doc(text) for text in texts)
for pipe in pipes:
docs = pipe(docs)
for doc in docs:
yield doc
def _has_gpu_model(self, disable: Iterable[str]):
for name, proc in self.pipeline:
is_trainable = hasattr(proc, "is_trainable") and proc.is_trainable # type: ignore
if name in disable or not is_trainable:
continue
if hasattr(proc, "model") and hasattr(proc.model, "ops") and isinstance(proc.model.ops, CupyOps): # type: ignore
return True
return False
def _multiprocessing_pipe(
self,
texts: Iterable[Union[str, Doc]],
pipes: Iterable[Callable[..., Iterator[Doc]]],
n_process: int,
batch_size: int,
) -> Iterator[Doc]:
def prepare_input(
texts: Iterable[Union[str, Doc]]
) -> Iterable[Tuple[Union[str, bytes], _AnyContext]]:
# Serialize Doc inputs to bytes to avoid incurring pickling
# overhead when they are passed to child processes. Also yield
# any context objects they might have separately (as they are not serialized).
for doc_like in texts:
if isinstance(doc_like, Doc):
yield (doc_like.to_bytes(), cast(_AnyContext, doc_like._context))
else:
yield (doc_like, cast(_AnyContext, None))
serialized_texts_with_ctx = prepare_input(texts) # type: ignore
# raw_texts is used later to stop iteration.
texts, raw_texts = itertools.tee(serialized_texts_with_ctx) # type: ignore
# for sending texts to worker
texts_q: List[mp.Queue] = [mp.Queue() for _ in range(n_process)]
# for receiving byte-encoded docs from worker
bytedocs_recv_ch, bytedocs_send_ch = zip(
*[mp.Pipe(False) for _ in range(n_process)]
)
batch_texts = util.minibatch(texts, batch_size)
# Sender sends texts to the workers.
# This is necessary to properly handle infinite length of texts.
# (In this case, all data cannot be sent to the workers at once)
sender = _Sender(batch_texts, texts_q, chunk_size=n_process)
# send twice to make process busy
sender.send()
sender.send()
procs = [
mp.Process(
target=_apply_pipes,
args=(
self._ensure_doc_with_context,
pipes,
rch,
sch,
Underscore.get_state(),
),
)
for rch, sch in zip(texts_q, bytedocs_send_ch)
]
for proc in procs:
proc.start()
# Close writing-end of channels. This is needed to avoid that reading
# from the channel blocks indefinitely when the worker closes the
# channel.
for tx in bytedocs_send_ch:
tx.close()
# Cycle channels not to break the order of docs.
# The received object is a batch of byte-encoded docs, so flatten them with chain.from_iterable.
byte_tuples = chain.from_iterable(
recv.recv() for recv in cycle(bytedocs_recv_ch)
)
try:
for i, (_, (byte_doc, context, byte_error)) in enumerate(
zip(raw_texts, byte_tuples), 1
):
if byte_doc is not None:
doc = Doc(self.vocab).from_bytes(byte_doc)
doc._context = context
yield doc
elif byte_error is not None:
error = srsly.msgpack_loads(byte_error)
self.default_error_handler(
None, None, None, ValueError(Errors.E871.format(error=error))
)
if i % batch_size == 0:
# tell `sender` that one batch was consumed.
sender.step()
finally:
# If we are stopping in an orderly fashion, the workers' queues
# are empty. Put the sentinel in their queues to signal that work
# is done, so that they can exit gracefully.
for q in texts_q:
q.put(_WORK_DONE_SENTINEL)
q.close()
# Otherwise, we are stopping because the error handler raised an
# exception. The sentinel will be last to go out of the queue.
# To avoid doing unnecessary work or hanging on platforms that
# block on sending (Windows), we'll close our end of the channel.
# This signals to the worker that it can exit the next time it
# attempts to send data down the channel.
for r in bytedocs_recv_ch:
r.close()
for proc in procs:
proc.join()
if not all(proc.exitcode == 0 for proc in procs):
warnings.warn(Warnings.W127)
def _link_components(self) -> None:
"""Register 'listeners' within pipeline components, to allow them to
effectively share weights.
"""
# I had thought, "Why do we do this inside the Language object? Shouldn't
# it be the tok2vec/transformer/etc's job?
# The problem is we need to do it during deserialization...And the
# components don't receive the pipeline then. So this does have to be
# here :(
# First, fix up all the internal component names in case they have
# gotten out of sync due to sourcing components from different
# pipelines, since find_listeners uses proc2.name for the listener
# map.
for name, proc in self.pipeline:
if hasattr(proc, "name"):
proc.name = name
for i, (name1, proc1) in enumerate(self.pipeline):
if isinstance(proc1, ty.ListenedToComponent):
proc1.listener_map = {}
for name2, proc2 in self.pipeline[i + 1 :]:
proc1.find_listeners(proc2)
@classmethod
def from_config(
cls,
config: Union[Dict[str, Any], Config] = {},
*,
vocab: Union[Vocab, bool] = True,
disable: Union[str, Iterable[str]] = _DEFAULT_EMPTY_PIPES,
enable: Union[str, Iterable[str]] = _DEFAULT_EMPTY_PIPES,
exclude: Union[str, Iterable[str]] = _DEFAULT_EMPTY_PIPES,
meta: Dict[str, Any] = SimpleFrozenDict(),
auto_fill: bool = True,
validate: bool = True,
) -> "Language":
"""Create the nlp object from a loaded config. Will set up the tokenizer
and language data, add pipeline components etc. If no config is provided,
the default config of the given language is used.
config (Dict[str, Any] / Config): The loaded config.
vocab (Vocab): A Vocab object. If True, a vocab is created.
disable (Union[str, Iterable[str]]): Name(s) of pipeline component(s) to disable.
Disabled pipes will be loaded but they won't be run unless you
explicitly enable them by calling nlp.enable_pipe.
enable (Union[str, Iterable[str]]): Name(s) of pipeline component(s) to enable. All other
pipes will be disabled (and can be enabled using `nlp.enable_pipe`).
exclude (Union[str, Iterable[str]]): Name(s) of pipeline component(s) to exclude.
Excluded components won't be loaded.
meta (Dict[str, Any]): Meta overrides for nlp.meta.
auto_fill (bool): Automatically fill in missing values in config based
on defaults and function argument annotations.
validate (bool): Validate the component config and arguments against
the types expected by the factory.
RETURNS (Language): The initialized Language class.
DOCS: https://spacy.io/api/language#from_config
"""
if auto_fill:
config = Config(
cls.default_config, section_order=CONFIG_SECTION_ORDER
).merge(config)
if "nlp" not in config:
raise ValueError(Errors.E985.format(config=config))
# fill in [nlp.vectors] if not present (as a narrower alternative to
# auto-filling [nlp] from the default config)
if "vectors" not in config["nlp"]:
config["nlp"]["vectors"] = {"@vectors": "spacy.Vectors.v1"}
config_lang = config["nlp"].get("lang")
if config_lang is not None and config_lang != cls.lang:
raise ValueError(
Errors.E958.format(
bad_lang_code=config["nlp"]["lang"],
lang_code=cls.lang,
lang=util.get_object_name(cls),
)
)
config["nlp"]["lang"] = cls.lang
# This isn't very elegant, but we remove the [components] block here to prevent
# it from getting resolved (causes problems because we expect to pass in
# the nlp and name args for each component). If we're auto-filling, we're
# using the nlp.config with all defaults.
config = util.copy_config(config)
orig_pipeline = config.pop("components", {})
orig_pretraining = config.pop("pretraining", None)
config["components"] = {}
if auto_fill:
filled = registry.fill(config, validate=validate, schema=ConfigSchema)
else:
filled = config
filled["components"] = orig_pipeline
config["components"] = orig_pipeline
if orig_pretraining is not None:
filled["pretraining"] = orig_pretraining
config["pretraining"] = orig_pretraining
resolved_nlp = registry.resolve(
filled["nlp"], validate=validate, schema=ConfigSchemaNlp
)
create_tokenizer = resolved_nlp["tokenizer"]
create_vectors = resolved_nlp["vectors"]
before_creation = resolved_nlp["before_creation"]
after_creation = resolved_nlp["after_creation"]
after_pipeline_creation = resolved_nlp["after_pipeline_creation"]
lang_cls = cls
if before_creation is not None:
lang_cls = before_creation(cls)
if (
not isinstance(lang_cls, type)
or not issubclass(lang_cls, cls)
or lang_cls is not cls
):
raise ValueError(Errors.E943.format(value=type(lang_cls)))
# Warn about require_gpu usage in jupyter notebook
warn_if_jupyter_cupy()
# Note that we don't load vectors here, instead they get loaded explicitly
# inside stuff like the spacy train function. If we loaded them here,
# then we would load them twice at runtime: once when we make from config,
# and then again when we load from disk.
nlp = lang_cls(
vocab=vocab,
create_tokenizer=create_tokenizer,
create_vectors=create_vectors,
meta=meta,
)
if after_creation is not None:
nlp = after_creation(nlp)
if not isinstance(nlp, cls):
raise ValueError(Errors.E942.format(name="creation", value=type(nlp)))
# To create the components we need to use the final interpolated config
# so all values are available (if component configs use variables).
# Later we replace the component config with the raw config again.
interpolated = filled.interpolate() if not filled.is_interpolated else filled
pipeline = interpolated.get("components", {})
# If components are loaded from a source (existing models), we cache
# them here so they're only loaded once
source_nlps = {}
source_nlp_vectors_hashes = {}
vocab_b = None
for pipe_name in config["nlp"]["pipeline"]:
if pipe_name not in pipeline:
opts = ", ".join(pipeline.keys())
raise ValueError(Errors.E956.format(name=pipe_name, opts=opts))
pipe_cfg = util.copy_config(pipeline[pipe_name])
raw_config = Config(filled["components"][pipe_name])
if pipe_name not in exclude:
if "factory" not in pipe_cfg and "source" not in pipe_cfg:
err = Errors.E984.format(name=pipe_name, config=pipe_cfg)
raise ValueError(err)
if "factory" in pipe_cfg:
factory = pipe_cfg.pop("factory")
# The pipe name (key in the config) here is the unique name
# of the component, not necessarily the factory
nlp.add_pipe(
factory,
name=pipe_name,
config=pipe_cfg,
validate=validate,
raw_config=raw_config,
)
else:
assert "source" in pipe_cfg
# We need the sourced components to reference the same
# vocab without modifying the current vocab state **AND**
# we still want to load the source model vectors to perform
# the vectors check. Since the source vectors clobber the
# current ones, we save the original vocab state and
# restore after this loop. Existing strings are preserved
# during deserialization, so they do not need any
# additional handling.
if vocab_b is None:
vocab_b = nlp.vocab.to_bytes(exclude=["lookups", "strings"])
model = pipe_cfg["source"]
if model not in source_nlps:
# Load with the same vocab, adding any strings
source_nlps[model] = util.load_model(
model, vocab=nlp.vocab, exclude=["lookups"]
)
source_name = pipe_cfg.get("component", pipe_name)
listeners_replaced = False
if "replace_listeners" in pipe_cfg:
# Make sure that the listened-to component has the
# state of the source pipeline listener map so that the
# replace_listeners method below works as intended.
source_nlps[model]._link_components()
for name, proc in source_nlps[model].pipeline:
if source_name in getattr(proc, "listening_components", []):
source_nlps[model].replace_listeners(
name, source_name, pipe_cfg["replace_listeners"]
)
listeners_replaced = True
with warnings.catch_warnings():
warnings.filterwarnings("ignore", message="\\[W113\\]")
nlp.add_pipe(
source_name, source=source_nlps[model], name=pipe_name
)
# At this point after nlp.add_pipe, the listener map
# corresponds to the new pipeline.
if model not in source_nlp_vectors_hashes:
source_nlp_vectors_hashes[model] = hash(
source_nlps[model].vocab.vectors.to_bytes(
exclude=["strings"]
)
)
if "_sourced_vectors_hashes" not in nlp.meta:
nlp.meta["_sourced_vectors_hashes"] = {}
nlp.meta["_sourced_vectors_hashes"][
pipe_name
] = source_nlp_vectors_hashes[model]
# Delete from cache if listeners were replaced
if listeners_replaced:
del source_nlps[model]
# Restore the original vocab after sourcing if necessary
if vocab_b is not None:
nlp.vocab.from_bytes(vocab_b)
# Resolve disabled/enabled settings.
if isinstance(disable, str):
disable = [disable]
if isinstance(enable, str):
enable = [enable]
if isinstance(exclude, str):
exclude = [exclude]
# `enable` should not be merged with `enabled` (the opposite is true for `disable`/`disabled`). If the config
# specifies values for `enabled` not included in `enable`, emit warning.
if id(enable) != id(_DEFAULT_EMPTY_PIPES):
enabled = config["nlp"].get("enabled", [])
if len(enabled) and not set(enabled).issubset(enable):
warnings.warn(
Warnings.W123.format(
enable=enable,
enabled=enabled,
)
)
# Ensure sets of disabled/enabled pipe names are not contradictory.
disabled_pipes = cls._resolve_component_status(
list({*disable, *config["nlp"].get("disabled", [])}),
enable,
config["nlp"]["pipeline"],
)
nlp._disabled = set(p for p in disabled_pipes if p not in exclude)
nlp.batch_size = config["nlp"]["batch_size"]
nlp.config = filled if auto_fill else config
if after_pipeline_creation is not None:
nlp = after_pipeline_creation(nlp)
if not isinstance(nlp, cls):
raise ValueError(
Errors.E942.format(name="pipeline_creation", value=type(nlp))
)
return nlp
def replace_listeners(
self,
tok2vec_name: str,
pipe_name: str,
listeners: Iterable[str],
) -> None:
"""Find listener layers (connecting to a token-to-vector embedding
component) of a given pipeline component model and replace
them with a standalone copy of the token-to-vector layer. This can be
useful when training a pipeline with components sourced from an existing
pipeline: if multiple components (e.g. tagger, parser, NER) listen to
the same tok2vec component, but some of them are frozen and not updated,
their performance may degrade significantly as the tok2vec component is
updated with new data. To prevent this, listeners can be replaced with
a standalone tok2vec layer that is owned by the component and doesn't
change if the component isn't updated.
tok2vec_name (str): Name of the token-to-vector component, typically
"tok2vec" or "transformer".
pipe_name (str): Name of pipeline component to replace listeners for.
listeners (Iterable[str]): The paths to the listeners, relative to the
component config, e.g. ["model.tok2vec"]. Typically, implementations
will only connect to one tok2vec component, [model.tok2vec], but in
theory, custom models can use multiple listeners. The value here can
either be an empty list to not replace any listeners, or a complete
(!) list of the paths to all listener layers used by the model.
DOCS: https://spacy.io/api/language#replace_listeners
"""
if tok2vec_name not in self.pipe_names:
err = Errors.E889.format(
tok2vec=tok2vec_name,
name=pipe_name,
unknown=tok2vec_name,
opts=", ".join(self.pipe_names),
)
raise ValueError(err)
if pipe_name not in self.pipe_names:
err = Errors.E889.format(
tok2vec=tok2vec_name,
name=pipe_name,
unknown=pipe_name,
opts=", ".join(self.pipe_names),
)
raise ValueError(err)
tok2vec = self.get_pipe(tok2vec_name)
tok2vec_cfg = self.get_pipe_config(tok2vec_name)
if not isinstance(tok2vec, ty.ListenedToComponent):
raise ValueError(Errors.E888.format(name=tok2vec_name, pipe=type(tok2vec)))
tok2vec_model = tok2vec.model
pipe_listeners = tok2vec.listener_map.get(pipe_name, [])
pipe = self.get_pipe(pipe_name)
pipe_cfg = self._pipe_configs[pipe_name]
if listeners:
util.logger.debug("Replacing listeners of component '%s'", pipe_name)
if len(list(listeners)) != len(pipe_listeners):
# The number of listeners defined in the component model doesn't
# match the listeners to replace, so we won't be able to update
# the nodes and generate a matching config
err = Errors.E887.format(
name=pipe_name,
tok2vec=tok2vec_name,
paths=listeners,
n_listeners=len(pipe_listeners),
)
raise ValueError(err)
# Update the config accordingly by copying the tok2vec model to all
# sections defined in the listener paths
for listener_path in listeners:
# Check if the path actually exists in the config
try:
util.dot_to_object(pipe_cfg, listener_path)
except KeyError:
err = Errors.E886.format(
name=pipe_name, tok2vec=tok2vec_name, path=listener_path
)
raise ValueError(err)
new_config = tok2vec_cfg["model"]
if "replace_listener_cfg" in tok2vec_model.attrs:
replace_func = tok2vec_model.attrs["replace_listener_cfg"]
new_config = replace_func(
tok2vec_cfg["model"], pipe_cfg["model"]["tok2vec"]
)
util.set_dot_to_object(pipe_cfg, listener_path, new_config)
# Go over the listener layers and replace them
for listener in pipe_listeners:
new_model = tok2vec_model.copy()
replace_listener_func = tok2vec_model.attrs.get("replace_listener")
if replace_listener_func is not None:
# Pass the extra args to the callback without breaking compatibility with
# old library versions that only expect a single parameter.
num_params = len(
inspect.signature(replace_listener_func).parameters
)
if num_params == 1:
new_model = replace_listener_func(new_model)
elif num_params == 3:
new_model = replace_listener_func(new_model, listener, tok2vec)
else:
raise ValueError(Errors.E1055.format(num_params=num_params))
util.replace_model_node(pipe.model, listener, new_model) # type: ignore[attr-defined]
tok2vec.remove_listener(listener, pipe_name)
@contextmanager
def memory_zone(self, mem: Optional[Pool] = None) -> Iterator[Pool]:
"""Begin a block where all resources allocated during the block will
be freed at the end of it. If a resources was created within the
memory zone block, accessing it outside the block is invalid.
Behaviour of this invalid access is undefined. Memory zones should
not be nested.
The memory zone is helpful for services that need to process large
volumes of text with a defined memory budget.
Example
-------
>>> with nlp.memory_zone():
... for doc in nlp.pipe(texts):
... process_my_doc(doc)
>>> # use_doc(doc) <-- Invalid: doc was allocated in the memory zone
"""
if mem is None:
mem = Pool()
# The ExitStack allows programmatic nested context managers.
# We don't know how many we need, so it would be awkward to have
# them as nested blocks.
with ExitStack() as stack:
contexts = [stack.enter_context(self.vocab.memory_zone(mem))]
if hasattr(self.tokenizer, "memory_zone"):
contexts.append(stack.enter_context(self.tokenizer.memory_zone(mem)))
for _, pipe in self.pipeline:
if hasattr(pipe, "memory_zone"):
contexts.append(stack.enter_context(pipe.memory_zone(mem)))
yield mem
def to_disk(
self, path: Union[str, Path], *, exclude: Iterable[str] = SimpleFrozenList()
) -> None:
"""Save the current state to a directory. If a model is loaded, this
will include the model.
path (str / Path): Path to a directory, which will be created if
it doesn't exist.
exclude (Iterable[str]): Names of components or serialization fields to exclude.
DOCS: https://spacy.io/api/language#to_disk
"""
path = util.ensure_path(path)
serializers = {}
serializers["tokenizer"] = lambda p: self.tokenizer.to_disk( # type: ignore[union-attr]
p, exclude=["vocab"]
)
serializers["meta.json"] = lambda p: srsly.write_json(p, self.meta)
serializers["config.cfg"] = lambda p: self.config.to_disk(p)
for name, proc in self._components:
if name in exclude:
continue
if not hasattr(proc, "to_disk"):
continue
serializers[name] = lambda p, proc=proc: proc.to_disk(p, exclude=["vocab"]) # type: ignore[misc]
serializers["vocab"] = lambda p: self.vocab.to_disk(p, exclude=exclude)
util.to_disk(path, serializers, exclude)
@staticmethod
def _resolve_component_status(
disable: Union[str, Iterable[str]],
enable: Union[str, Iterable[str]],
pipe_names: Iterable[str],
) -> Tuple[str, ...]:
"""Derives whether (1) `disable` and `enable` values are consistent and (2)
resolves those to a single set of disabled components. Raises an error in
case of inconsistency.
disable (Union[str, Iterable[str]]): Name(s) of component(s) or serialization fields to disable.
enable (Union[str, Iterable[str]]): Name(s) of pipeline component(s) to enable.
pipe_names (Iterable[str]): Names of all pipeline components.
RETURNS (Tuple[str, ...]): Names of components to exclude from pipeline w.r.t.
specified includes and excludes.
"""
if isinstance(disable, str):
disable = [disable]
to_disable = disable
if enable:
if isinstance(enable, str):
enable = [enable]
to_disable = {
*[pipe_name for pipe_name in pipe_names if pipe_name not in enable],
*disable,
}
# If any pipe to be enabled is in to_disable, the specification is inconsistent.
if len(set(enable) & to_disable):
raise ValueError(Errors.E1042.format(enable=enable, disable=disable))
return tuple(to_disable)
def from_disk(
self,
path: Union[str, Path],
*,
exclude: Iterable[str] = SimpleFrozenList(),
overrides: Dict[str, Any] = SimpleFrozenDict(),
) -> "Language":
"""Loads state from a directory. Modifies the object in place and
returns it. If the saved `Language` object contains a model, the
model will be loaded.
path (str / Path): A path to a directory.
exclude (Iterable[str]): Names of components or serialization fields to exclude.
RETURNS (Language): The modified `Language` object.
DOCS: https://spacy.io/api/language#from_disk
"""
def deserialize_meta(path: Path) -> None:
if path.exists():
data = srsly.read_json(path)
self.meta.update(data)
# self.meta always overrides meta["vectors"] with the metadata
# from self.vocab.vectors, so set the name directly
self.vocab.vectors.name = data.get("vectors", {}).get("name")
def deserialize_vocab(path: Path) -> None:
if path.exists():
self.vocab.from_disk(path, exclude=exclude)
path = util.ensure_path(path)
deserializers = {}
if Path(path / "config.cfg").exists(): # type: ignore[operator]
deserializers["config.cfg"] = lambda p: self.config.from_disk(
p, interpolate=False, overrides=overrides
)
deserializers["meta.json"] = deserialize_meta # type: ignore[assignment]
deserializers["vocab"] = deserialize_vocab # type: ignore[assignment]
deserializers["tokenizer"] = lambda p: self.tokenizer.from_disk( # type: ignore[union-attr]
p, exclude=["vocab"]
)
for name, proc in self._components:
if name in exclude:
continue
if not hasattr(proc, "from_disk"):
continue
deserializers[name] = lambda p, proc=proc: proc.from_disk( # type: ignore[misc]
p, exclude=["vocab"]
)
if not (path / "vocab").exists() and "vocab" not in exclude: # type: ignore[operator]
# Convert to list here in case exclude is (default) tuple
exclude = list(exclude) + ["vocab"]
util.from_disk(path, deserializers, exclude) # type: ignore[arg-type]
self._path = path # type: ignore[assignment]
self._link_components()
return self
def to_bytes(self, *, exclude: Iterable[str] = SimpleFrozenList()) -> bytes:
"""Serialize the current state to a binary string.
exclude (Iterable[str]): Names of components or serialization fields to exclude.
RETURNS (bytes): The serialized form of the `Language` object.
DOCS: https://spacy.io/api/language#to_bytes
"""
serializers: Dict[str, Callable[[], bytes]] = {}
serializers["vocab"] = lambda: self.vocab.to_bytes(exclude=exclude)
serializers["tokenizer"] = lambda: self.tokenizer.to_bytes(exclude=["vocab"]) # type: ignore[union-attr]
serializers["meta.json"] = lambda: srsly.json_dumps(self.meta)
serializers["config.cfg"] = lambda: self.config.to_bytes()
for name, proc in self._components:
if name in exclude:
continue
if not hasattr(proc, "to_bytes"):
continue
serializers[name] = lambda proc=proc: proc.to_bytes(exclude=["vocab"]) # type: ignore[misc]
return util.to_bytes(serializers, exclude)
def from_bytes(
self, bytes_data: bytes, *, exclude: Iterable[str] = SimpleFrozenList()
) -> "Language":
"""Load state from a binary string.
bytes_data (bytes): The data to load from.
exclude (Iterable[str]): Names of components or serialization fields to exclude.
RETURNS (Language): The `Language` object.
DOCS: https://spacy.io/api/language#from_bytes
"""
def deserialize_meta(b):
data = srsly.json_loads(b)
self.meta.update(data)
# self.meta always overrides meta["vectors"] with the metadata
# from self.vocab.vectors, so set the name directly
self.vocab.vectors.name = data.get("vectors", {}).get("name")
deserializers: Dict[str, Callable[[bytes], Any]] = {}
deserializers["config.cfg"] = lambda b: self.config.from_bytes(
b, interpolate=False
)
deserializers["meta.json"] = deserialize_meta
deserializers["vocab"] = lambda b: self.vocab.from_bytes(b, exclude=exclude)
deserializers["tokenizer"] = lambda b: self.tokenizer.from_bytes( # type: ignore[union-attr]
b, exclude=["vocab"]
)
for name, proc in self._components:
if name in exclude:
continue
if not hasattr(proc, "from_bytes"):
continue
deserializers[name] = lambda b, proc=proc: proc.from_bytes( # type: ignore[misc]
b, exclude=["vocab"]
)
util.from_bytes(bytes_data, deserializers, exclude)
self._link_components()
return self
@dataclass
class FactoryMeta:
"""Dataclass containing information about a component and its defaults
provided by the @Language.component or @Language.factory decorator. It's
created whenever a component is defined and stored on the Language class for
each component instance and factory instance.
"""
factory: str
default_config: Optional[Dict[str, Any]] = None # noqa: E704
assigns: Iterable[str] = tuple()
requires: Iterable[str] = tuple()
retokenizes: bool = False
scores: Iterable[str] = tuple()
default_score_weights: Optional[Dict[str, Optional[float]]] = None # noqa: E704
class DisabledPipes(list):
"""Manager for temporary pipeline disabling."""
def __init__(self, nlp: Language, names: List[str]) -> None:
self.nlp = nlp
self.names = names
for name in self.names:
self.nlp.disable_pipe(name)
list.__init__(self)
self.extend(self.names)
def __enter__(self):
return self
def __exit__(self, *args):
self.restore()
def restore(self) -> None:
"""Restore the pipeline to its state when DisabledPipes was created."""
for name in self.names:
if name not in self.nlp.component_names:
raise ValueError(Errors.E008.format(name=name))
self.nlp.enable_pipe(name)
self[:] = []
def _copy_examples(examples: Iterable[Example]) -> List[Example]:
"""Make a copy of a batch of examples, copying the predicted Doc as well.
This is used in contexts where we need to take ownership of the examples
so that they can be mutated, for instance during Language.evaluate and
Language.update.
"""
return [Example(eg.x.copy(), eg.y) for eg in examples]
def _apply_pipes(
ensure_doc: Callable[[Union[str, Doc, bytes], _AnyContext], Doc],
pipes: Iterable[Callable[..., Iterator[Doc]]],
receiver,
sender,
underscore_state: Tuple[dict, dict, dict],
) -> None:
"""Worker for Language.pipe
ensure_doc (Callable[[Union[str, Doc]], Doc]): Function to create Doc from text
or raise an error if the input is neither a Doc nor a string.
pipes (Iterable[Pipe]): The components to apply.
receiver (multiprocessing.Connection): Pipe to receive text. Usually
created by `multiprocessing.Pipe()`
sender (multiprocessing.Connection): Pipe to send doc. Usually created by
`multiprocessing.Pipe()`
underscore_state (Tuple[dict, dict, dict]): The data in the Underscore class
of the parent.
"""
Underscore.load_state(underscore_state)
while True:
try:
texts_with_ctx = receiver.get()
# Stop working if we encounter the end-of-work sentinel.
if isinstance(texts_with_ctx, _WorkDoneSentinel):
sender.close()
receiver.close()
return
docs = (
ensure_doc(doc_like, context) for doc_like, context in texts_with_ctx
)
for pipe in pipes:
docs = pipe(docs) # type: ignore[arg-type, assignment]
# Connection does not accept unpickable objects, so send list.
byte_docs = [(doc.to_bytes(), doc._context, None) for doc in docs]
padding = [(None, None, None)] * (len(texts_with_ctx) - len(byte_docs))
data: Sequence[Tuple[Optional[bytes], Optional[Any], Optional[bytes]]] = (
byte_docs + padding # type: ignore[operator]
)
except Exception:
error_msg = [(None, None, srsly.msgpack_dumps(traceback.format_exc()))]
padding = [(None, None, None)] * (len(texts_with_ctx) - 1)
data = error_msg + padding
try:
sender.send(data)
except BrokenPipeError:
# Parent has closed the pipe prematurely. This happens when a
# worker encounters an error and the error handler is set to
# stop processing.
sender.close()
receiver.close()
return
class _Sender:
"""Util for sending data to multiprocessing workers in Language.pipe"""
def __init__(
self, data: Iterable[Any], queues: List[mp.Queue], chunk_size: int
) -> None:
self.data = iter(data)
self.queues = iter(cycle(queues))
self.chunk_size = chunk_size
self.count = 0
def send(self) -> None:
"""Send chunk_size items from self.data to channels."""
for item, q in itertools.islice(
zip(self.data, cycle(self.queues)), self.chunk_size
):
# cycle channels so that distribute the texts evenly
q.put(item)
def step(self) -> None:
"""Tell sender that comsumed one item. Data is sent to the workers after
every chunk_size calls.
"""
self.count += 1
if self.count >= self.chunk_size:
self.count = 0
self.send()
class _WorkDoneSentinel:
pass
_WORK_DONE_SENTINEL = _WorkDoneSentinel()