mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-27 17:54:39 +03:00
2bcceb80c4
* Refactor the Scorer to improve flexibility Refactor the `Scorer` to improve flexibility for arbitrary pipeline components. * Individual pipeline components provide their own `evaluate` methods that score a list of `Example`s and return a dictionary of scores * `Scorer` is initialized either: * with a provided pipeline containing components to be scored * with a default pipeline containing the built-in statistical components (senter, tagger, morphologizer, parser, ner) * `Scorer.score` evaluates a list of `Example`s and returns a dictionary of scores referring to the scores provided by the components in the pipeline Significant differences: * `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc` and the new `morph_acc`, `pos_acc`, and `lemma_acc` * Scoring is no longer cumulative: `Scorer.score` scores a list of examples rather than a single example and does not retain any state about previously scored examples * PRF values in the returned scores are no longer multiplied by 100 * Add kwargs to Morphologizer.evaluate * Create generalized scoring methods in Scorer * Generalized static scoring methods are added to `Scorer` * Methods require an attribute (either on Token or Doc) that is used to key the returned scores Naming differences: * `uas`, `las`, and `las_per_type` in the scores dict are renamed to `dep_uas`, `dep_las`, and `dep_las_per_type` Scoring differences: * `Doc.sents` is now scored as spans rather than on sentence-initial token positions so that `Doc.sents` and `Doc.ents` can be scored with the same method (this lowers scores since a single incorrect sentence start results in two incorrect spans) * Simplify / extend hasattr check for eval method * Add hasattr check to tokenizer scoring * Simplify to hasattr check for component scoring * Reset Example alignment if docs are set Reset the Example alignment if either doc is set in case the tokenization has changed. * Add PRF tokenization scoring for tokens as spans Add PRF scores for tokens as character spans. The scores are: * token_acc: # correct tokens / # gold tokens * token_p/r/f: PRF for (token.idx, token.idx + len(token)) * Add docstring to Scorer.score_tokenization * Rename component.evaluate() to component.score() * Update Scorer API docs * Update scoring for positive_label in textcat * Fix TextCategorizer.score kwargs * Update Language.evaluate docs * Update score names in default config
176 lines
5.8 KiB
Cython
176 lines
5.8 KiB
Cython
# cython: infer_types=True, profile=True, binding=True
|
|
import srsly
|
|
|
|
from ..tokens.doc cimport Doc
|
|
|
|
from ..util import link_vectors_to_models, create_default_optimizer
|
|
from ..errors import Errors
|
|
from .. import util
|
|
|
|
|
|
def deserialize_config(path):
|
|
if path.exists():
|
|
return srsly.read_json(path)
|
|
else:
|
|
return {}
|
|
|
|
|
|
class Pipe:
|
|
"""This class is not instantiated directly. Components inherit from it, and
|
|
it defines the interface that components should follow to function as
|
|
components in a spaCy analysis pipeline.
|
|
"""
|
|
|
|
name = None
|
|
|
|
def __init__(self, vocab, model, **cfg):
|
|
"""Create a new pipe instance."""
|
|
raise NotImplementedError
|
|
|
|
def __call__(self, Doc doc):
|
|
"""Apply the pipe to one document. The document is
|
|
modified in-place, and returned.
|
|
|
|
Both __call__ and pipe should delegate to the `predict()`
|
|
and `set_annotations()` methods.
|
|
"""
|
|
scores = self.predict([doc])
|
|
self.set_annotations([doc], scores)
|
|
return doc
|
|
|
|
def pipe(self, stream, batch_size=128):
|
|
"""Apply the pipe to a stream of documents.
|
|
|
|
Both __call__ and pipe should delegate to the `predict()`
|
|
and `set_annotations()` methods.
|
|
"""
|
|
for docs in util.minibatch(stream, size=batch_size):
|
|
scores = self.predict(docs)
|
|
self.set_annotations(docs, scores)
|
|
yield from docs
|
|
|
|
def predict(self, docs):
|
|
"""Apply the pipeline's model to a batch of docs, without
|
|
modifying them.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def set_annotations(self, docs, scores):
|
|
"""Modify a batch of documents, using pre-computed scores."""
|
|
raise NotImplementedError
|
|
|
|
def rehearse(self, examples, sgd=None, losses=None, **config):
|
|
pass
|
|
|
|
def get_loss(self, examples, scores):
|
|
"""Find the loss and gradient of loss for the batch of
|
|
examples (with embedded docs) and their predicted scores."""
|
|
raise NotImplementedError
|
|
|
|
def add_label(self, label):
|
|
"""Add an output label, to be predicted by the model.
|
|
|
|
It's possible to extend pretrained models with new labels,
|
|
but care should be taken to avoid the "catastrophic forgetting"
|
|
problem.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def create_optimizer(self):
|
|
return create_default_optimizer()
|
|
|
|
def begin_training(self, get_examples=lambda: [], pipeline=None, sgd=None):
|
|
"""Initialize the pipe for training, using data exampes if available.
|
|
If no model has been initialized yet, the model is added."""
|
|
self.model.initialize()
|
|
if hasattr(self, "vocab"):
|
|
link_vectors_to_models(self.vocab)
|
|
if sgd is None:
|
|
sgd = self.create_optimizer()
|
|
return sgd
|
|
|
|
def set_output(self, nO):
|
|
if self.model.has_dim("nO") is not False:
|
|
self.model.set_dim("nO", nO)
|
|
if self.model.has_ref("output_layer"):
|
|
self.model.get_ref("output_layer").set_dim("nO", nO)
|
|
|
|
def get_gradients(self):
|
|
"""Get non-zero gradients of the model's parameters, as a dictionary
|
|
keyed by the parameter ID. The values are (weights, gradients) tuples.
|
|
"""
|
|
gradients = {}
|
|
queue = [self.model]
|
|
seen = set()
|
|
for node in queue:
|
|
if node.id in seen:
|
|
continue
|
|
seen.add(node.id)
|
|
if hasattr(node, "_mem") and node._mem.gradient.any():
|
|
gradients[node.id] = [node._mem.weights, node._mem.gradient]
|
|
if hasattr(node, "_layers"):
|
|
queue.extend(node._layers)
|
|
return gradients
|
|
|
|
def use_params(self, params):
|
|
"""Modify the pipe's model, to use the given parameter values."""
|
|
with self.model.use_params(params):
|
|
yield
|
|
|
|
def score(self, examples, **kwargs):
|
|
return {}
|
|
|
|
def to_bytes(self, exclude=tuple()):
|
|
"""Serialize the pipe to a bytestring.
|
|
|
|
exclude (list): String names of serialization fields to exclude.
|
|
RETURNS (bytes): The serialized object.
|
|
"""
|
|
serialize = {}
|
|
serialize["cfg"] = lambda: srsly.json_dumps(self.cfg)
|
|
serialize["model"] = self.model.to_bytes
|
|
if hasattr(self, "vocab"):
|
|
serialize["vocab"] = self.vocab.to_bytes
|
|
return util.to_bytes(serialize, exclude)
|
|
|
|
def from_bytes(self, bytes_data, exclude=tuple()):
|
|
"""Load the pipe from a bytestring."""
|
|
|
|
def load_model(b):
|
|
try:
|
|
self.model.from_bytes(b)
|
|
except AttributeError:
|
|
raise ValueError(Errors.E149)
|
|
|
|
deserialize = {}
|
|
if hasattr(self, "vocab"):
|
|
deserialize["vocab"] = lambda b: self.vocab.from_bytes(b)
|
|
deserialize["cfg"] = lambda b: self.cfg.update(srsly.json_loads(b))
|
|
deserialize["model"] = load_model
|
|
util.from_bytes(bytes_data, deserialize, exclude)
|
|
return self
|
|
|
|
def to_disk(self, path, exclude=tuple()):
|
|
"""Serialize the pipe to disk."""
|
|
serialize = {}
|
|
serialize["cfg"] = lambda p: srsly.write_json(p, self.cfg)
|
|
serialize["vocab"] = lambda p: self.vocab.to_disk(p)
|
|
serialize["model"] = lambda p: self.model.to_disk(p)
|
|
util.to_disk(path, serialize, exclude)
|
|
|
|
def from_disk(self, path, exclude=tuple()):
|
|
"""Load the pipe from disk."""
|
|
|
|
def load_model(p):
|
|
try:
|
|
self.model.from_bytes(p.open("rb").read())
|
|
except AttributeError:
|
|
raise ValueError(Errors.E149)
|
|
|
|
deserialize = {}
|
|
deserialize["vocab"] = lambda p: self.vocab.from_disk(p)
|
|
deserialize["cfg"] = lambda p: self.cfg.update(deserialize_config(p))
|
|
deserialize["model"] = load_model
|
|
util.from_disk(path, deserialize, exclude)
|
|
return self
|