mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-15 20:16:23 +03:00
a5cd203284
* Reduce stored lexemes data, move feats to lookups * Move non-derivable lexemes features (`norm / cluster / prob`) to `spacy-lookups-data` as lookups * Get/set `norm` in both lookups and `LexemeC`, serialize in lookups * Remove `cluster` and `prob` from `LexemesC`, get/set/serialize in lookups only * Remove serialization of lexemes data as `vocab/lexemes.bin` * Remove `SerializedLexemeC` * Remove `Lexeme.to_bytes/from_bytes` * Modify normalization exception loading: * Always create `Vocab.lookups` table `lexeme_norm` for normalization exceptions * Load base exceptions from `lang.norm_exceptions`, but load language-specific exceptions from lookups * Set `lex_attr_getter[NORM]` including new lookups table in `BaseDefaults.create_vocab()` and when deserializing `Vocab` * Remove all cached lexemes when deserializing vocab to override existing normalizations with the new normalizations (as a replacement for the previous step that replaced all lexemes data with the deserialized data) * Skip English normalization test Skip English normalization test because the data is now in `spacy-lookups-data`. * Remove norm exceptions Moved to spacy-lookups-data. * Move norm exceptions test to spacy-lookups-data * Load extra lookups from spacy-lookups-data lazily Load extra lookups (currently for cluster and prob) lazily from the entry point `lg_extra` as `Vocab.lookups_extra`. * Skip creating lexeme cache on load To improve model loading times, do not create the full lexeme cache when loading. The lexemes will be created on demand when processing. * Identify numeric values in Lexeme.set_attrs() With the removal of a special case for `PROB`, also identify `float` to avoid trying to convert it with the `StringStore`. * Skip lexeme cache init in from_bytes * Unskip and update lookups tests for python3.6+ * Update vocab pickle to include lookups_extra * Update vocab serialization tests Check strings rather than lexemes since lexemes aren't initialized automatically, account for addition of "_SP". * Re-skip lookups test because of python3.5 * Skip PROB/float values in Lexeme.set_attrs * Convert is_oov from lexeme flag to lex in vectors Instead of storing `is_oov` as a lexeme flag, `is_oov` reports whether the lexeme has a vector. Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
25 lines
683 B
Python
25 lines
683 B
Python
# coding: utf-8
|
||
from __future__ import unicode_literals
|
||
|
||
import pytest
|
||
|
||
|
||
@pytest.mark.parametrize("text", ["z.B.", "Jan."])
|
||
def test_lb_tokenizer_handles_abbr(lb_tokenizer, text):
|
||
tokens = lb_tokenizer(text)
|
||
assert len(tokens) == 1
|
||
|
||
|
||
@pytest.mark.parametrize("text", ["d'Saach", "d'Kanner", "d’Welt", "d’Suen"])
|
||
def test_lb_tokenizer_splits_contractions(lb_tokenizer, text):
|
||
tokens = lb_tokenizer(text)
|
||
assert len(tokens) == 2
|
||
|
||
|
||
def test_lb_tokenizer_handles_exc_in_text(lb_tokenizer):
|
||
text = "Mee 't ass net evident, d'Liewen."
|
||
tokens = lb_tokenizer(text)
|
||
assert len(tokens) == 9
|
||
assert tokens[1].text == "'t"
|
||
assert tokens[1].lemma_ == "et"
|