mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 18:07:26 +03:00 
			
		
		
		
	* Tagger: use unnormalized probabilities for inference Using unnormalized softmax avoids use of the relatively expensive exp function, which can significantly speed up non-transformer models (e.g. I got a speedup of 27% on a German tagging + parsing pipeline). * Add spacy.Tagger.v2 with configurable normalization Normalization of probabilities is disabled by default to improve performance. * Update documentation, models, and tests to spacy.Tagger.v2 * Move Tagger.v1 to spacy-legacy * docs/architectures: run prettier * Unnormalized softmax is now a Softmax_v2 option * Require thinc 8.0.14 and spacy-legacy 3.0.9
		
			
				
	
	
		
			518 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			518 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import pytest
 | 
						|
from catalogue import RegistryError
 | 
						|
from thinc.api import Config, ConfigValidationError
 | 
						|
 | 
						|
import spacy
 | 
						|
from spacy.lang.de import German
 | 
						|
from spacy.lang.en import English
 | 
						|
from spacy.language import DEFAULT_CONFIG, DEFAULT_CONFIG_PRETRAIN_PATH
 | 
						|
from spacy.language import Language
 | 
						|
from spacy.ml.models import MaxoutWindowEncoder, MultiHashEmbed
 | 
						|
from spacy.ml.models import build_tb_parser_model, build_Tok2Vec_model
 | 
						|
from spacy.schemas import ConfigSchema, ConfigSchemaPretrain
 | 
						|
from spacy.util import load_config, load_config_from_str
 | 
						|
from spacy.util import load_model_from_config, registry
 | 
						|
 | 
						|
from ..util import make_tempdir
 | 
						|
 | 
						|
nlp_config_string = """
 | 
						|
[paths]
 | 
						|
train = null
 | 
						|
dev = null
 | 
						|
 | 
						|
[corpora]
 | 
						|
 | 
						|
[corpora.train]
 | 
						|
@readers = "spacy.Corpus.v1"
 | 
						|
path = ${paths.train}
 | 
						|
 | 
						|
[corpora.dev]
 | 
						|
@readers = "spacy.Corpus.v1"
 | 
						|
path = ${paths.dev}
 | 
						|
 | 
						|
[training]
 | 
						|
 | 
						|
[training.batcher]
 | 
						|
@batchers = "spacy.batch_by_words.v1"
 | 
						|
size = 666
 | 
						|
 | 
						|
[nlp]
 | 
						|
lang = "en"
 | 
						|
pipeline = ["tok2vec", "tagger"]
 | 
						|
 | 
						|
[components]
 | 
						|
 | 
						|
[components.tok2vec]
 | 
						|
factory = "tok2vec"
 | 
						|
 | 
						|
[components.tok2vec.model]
 | 
						|
@architectures = "spacy.HashEmbedCNN.v1"
 | 
						|
pretrained_vectors = null
 | 
						|
width = 342
 | 
						|
depth = 4
 | 
						|
window_size = 1
 | 
						|
embed_size = 2000
 | 
						|
maxout_pieces = 3
 | 
						|
subword_features = true
 | 
						|
 | 
						|
[components.tagger]
 | 
						|
factory = "tagger"
 | 
						|
 | 
						|
[components.tagger.model]
 | 
						|
@architectures = "spacy.Tagger.v2"
 | 
						|
 | 
						|
[components.tagger.model.tok2vec]
 | 
						|
@architectures = "spacy.Tok2VecListener.v1"
 | 
						|
width = ${components.tok2vec.model.width}
 | 
						|
"""
 | 
						|
 | 
						|
pretrain_config_string = """
 | 
						|
[paths]
 | 
						|
train = null
 | 
						|
dev = null
 | 
						|
 | 
						|
[corpora]
 | 
						|
 | 
						|
[corpora.train]
 | 
						|
@readers = "spacy.Corpus.v1"
 | 
						|
path = ${paths.train}
 | 
						|
 | 
						|
[corpora.dev]
 | 
						|
@readers = "spacy.Corpus.v1"
 | 
						|
path = ${paths.dev}
 | 
						|
 | 
						|
[training]
 | 
						|
 | 
						|
[training.batcher]
 | 
						|
@batchers = "spacy.batch_by_words.v1"
 | 
						|
size = 666
 | 
						|
 | 
						|
[nlp]
 | 
						|
lang = "en"
 | 
						|
pipeline = ["tok2vec", "tagger"]
 | 
						|
 | 
						|
[components]
 | 
						|
 | 
						|
[components.tok2vec]
 | 
						|
factory = "tok2vec"
 | 
						|
 | 
						|
[components.tok2vec.model]
 | 
						|
@architectures = "spacy.HashEmbedCNN.v1"
 | 
						|
pretrained_vectors = null
 | 
						|
width = 342
 | 
						|
depth = 4
 | 
						|
window_size = 1
 | 
						|
embed_size = 2000
 | 
						|
maxout_pieces = 3
 | 
						|
subword_features = true
 | 
						|
 | 
						|
[components.tagger]
 | 
						|
factory = "tagger"
 | 
						|
 | 
						|
[components.tagger.model]
 | 
						|
@architectures = "spacy.Tagger.v2"
 | 
						|
 | 
						|
[components.tagger.model.tok2vec]
 | 
						|
@architectures = "spacy.Tok2VecListener.v1"
 | 
						|
width = ${components.tok2vec.model.width}
 | 
						|
 | 
						|
[pretraining]
 | 
						|
"""
 | 
						|
 | 
						|
 | 
						|
parser_config_string_upper = """
 | 
						|
[model]
 | 
						|
@architectures = "spacy.TransitionBasedParser.v2"
 | 
						|
state_type = "parser"
 | 
						|
extra_state_tokens = false
 | 
						|
hidden_width = 66
 | 
						|
maxout_pieces = 2
 | 
						|
use_upper = true
 | 
						|
 | 
						|
[model.tok2vec]
 | 
						|
@architectures = "spacy.HashEmbedCNN.v1"
 | 
						|
pretrained_vectors = null
 | 
						|
width = 333
 | 
						|
depth = 4
 | 
						|
embed_size = 5555
 | 
						|
window_size = 1
 | 
						|
maxout_pieces = 7
 | 
						|
subword_features = false
 | 
						|
"""
 | 
						|
 | 
						|
 | 
						|
parser_config_string_no_upper = """
 | 
						|
[model]
 | 
						|
@architectures = "spacy.TransitionBasedParser.v2"
 | 
						|
state_type = "parser"
 | 
						|
extra_state_tokens = false
 | 
						|
hidden_width = 66
 | 
						|
maxout_pieces = 2
 | 
						|
use_upper = false
 | 
						|
 | 
						|
[model.tok2vec]
 | 
						|
@architectures = "spacy.HashEmbedCNN.v1"
 | 
						|
pretrained_vectors = null
 | 
						|
width = 333
 | 
						|
depth = 4
 | 
						|
embed_size = 5555
 | 
						|
window_size = 1
 | 
						|
maxout_pieces = 7
 | 
						|
subword_features = false
 | 
						|
"""
 | 
						|
 | 
						|
 | 
						|
@registry.architectures("my_test_parser")
 | 
						|
def my_parser():
 | 
						|
    tok2vec = build_Tok2Vec_model(
 | 
						|
        MultiHashEmbed(
 | 
						|
            width=321,
 | 
						|
            attrs=["LOWER", "SHAPE"],
 | 
						|
            rows=[5432, 5432],
 | 
						|
            include_static_vectors=False,
 | 
						|
        ),
 | 
						|
        MaxoutWindowEncoder(width=321, window_size=3, maxout_pieces=4, depth=2),
 | 
						|
    )
 | 
						|
    parser = build_tb_parser_model(
 | 
						|
        tok2vec=tok2vec,
 | 
						|
        state_type="parser",
 | 
						|
        extra_state_tokens=True,
 | 
						|
        hidden_width=65,
 | 
						|
        maxout_pieces=5,
 | 
						|
        use_upper=True,
 | 
						|
    )
 | 
						|
    return parser
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.issue(8190)
 | 
						|
def test_issue8190():
 | 
						|
    """Test that config overrides are not lost after load is complete."""
 | 
						|
    source_cfg = {
 | 
						|
        "nlp": {
 | 
						|
            "lang": "en",
 | 
						|
        },
 | 
						|
        "custom": {"key": "value"},
 | 
						|
    }
 | 
						|
    source_nlp = English.from_config(source_cfg)
 | 
						|
    with make_tempdir() as dir_path:
 | 
						|
        # We need to create a loadable source pipeline
 | 
						|
        source_path = dir_path / "test_model"
 | 
						|
        source_nlp.to_disk(source_path)
 | 
						|
        nlp = spacy.load(source_path, config={"custom": {"key": "updated_value"}})
 | 
						|
 | 
						|
        assert nlp.config["custom"]["key"] == "updated_value"
 | 
						|
 | 
						|
 | 
						|
def test_create_nlp_from_config():
 | 
						|
    config = Config().from_str(nlp_config_string)
 | 
						|
    with pytest.raises(ConfigValidationError):
 | 
						|
        load_model_from_config(config, auto_fill=False)
 | 
						|
    nlp = load_model_from_config(config, auto_fill=True)
 | 
						|
    assert nlp.config["training"]["batcher"]["size"] == 666
 | 
						|
    assert len(nlp.config["training"]) > 1
 | 
						|
    assert nlp.pipe_names == ["tok2vec", "tagger"]
 | 
						|
    assert len(nlp.config["components"]) == 2
 | 
						|
    assert len(nlp.config["nlp"]["pipeline"]) == 2
 | 
						|
    nlp.remove_pipe("tagger")
 | 
						|
    assert len(nlp.config["components"]) == 1
 | 
						|
    assert len(nlp.config["nlp"]["pipeline"]) == 1
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        bad_cfg = {"yolo": {}}
 | 
						|
        load_model_from_config(Config(bad_cfg), auto_fill=True)
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        bad_cfg = {"pipeline": {"foo": "bar"}}
 | 
						|
        load_model_from_config(Config(bad_cfg), auto_fill=True)
 | 
						|
 | 
						|
 | 
						|
def test_create_nlp_from_pretraining_config():
 | 
						|
    """Test that the default pretraining config validates properly"""
 | 
						|
    config = Config().from_str(pretrain_config_string)
 | 
						|
    pretrain_config = load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
 | 
						|
    filled = config.merge(pretrain_config)
 | 
						|
    registry.resolve(filled["pretraining"], schema=ConfigSchemaPretrain)
 | 
						|
 | 
						|
 | 
						|
def test_create_nlp_from_config_multiple_instances():
 | 
						|
    """Test that the nlp object is created correctly for a config with multiple
 | 
						|
    instances of the same component."""
 | 
						|
    config = Config().from_str(nlp_config_string)
 | 
						|
    config["components"] = {
 | 
						|
        "t2v": config["components"]["tok2vec"],
 | 
						|
        "tagger1": config["components"]["tagger"],
 | 
						|
        "tagger2": config["components"]["tagger"],
 | 
						|
    }
 | 
						|
    config["nlp"]["pipeline"] = list(config["components"].keys())
 | 
						|
    nlp = load_model_from_config(config, auto_fill=True)
 | 
						|
    assert nlp.pipe_names == ["t2v", "tagger1", "tagger2"]
 | 
						|
    assert nlp.get_pipe_meta("t2v").factory == "tok2vec"
 | 
						|
    assert nlp.get_pipe_meta("tagger1").factory == "tagger"
 | 
						|
    assert nlp.get_pipe_meta("tagger2").factory == "tagger"
 | 
						|
    pipeline_config = nlp.config["components"]
 | 
						|
    assert len(pipeline_config) == 3
 | 
						|
    assert list(pipeline_config.keys()) == ["t2v", "tagger1", "tagger2"]
 | 
						|
    assert nlp.config["nlp"]["pipeline"] == ["t2v", "tagger1", "tagger2"]
 | 
						|
 | 
						|
 | 
						|
def test_serialize_nlp():
 | 
						|
    """Create a custom nlp pipeline from config and ensure it serializes it correctly"""
 | 
						|
    nlp_config = Config().from_str(nlp_config_string)
 | 
						|
    nlp = load_model_from_config(nlp_config, auto_fill=True)
 | 
						|
    nlp.get_pipe("tagger").add_label("A")
 | 
						|
    nlp.initialize()
 | 
						|
    assert "tok2vec" in nlp.pipe_names
 | 
						|
    assert "tagger" in nlp.pipe_names
 | 
						|
    assert "parser" not in nlp.pipe_names
 | 
						|
    assert nlp.get_pipe("tagger").model.get_ref("tok2vec").get_dim("nO") == 342
 | 
						|
 | 
						|
    with make_tempdir() as d:
 | 
						|
        nlp.to_disk(d)
 | 
						|
        nlp2 = spacy.load(d)
 | 
						|
        assert "tok2vec" in nlp2.pipe_names
 | 
						|
        assert "tagger" in nlp2.pipe_names
 | 
						|
        assert "parser" not in nlp2.pipe_names
 | 
						|
        assert nlp2.get_pipe("tagger").model.get_ref("tok2vec").get_dim("nO") == 342
 | 
						|
 | 
						|
 | 
						|
def test_serialize_custom_nlp():
 | 
						|
    """Create a custom nlp pipeline and ensure it serializes it correctly"""
 | 
						|
    nlp = English()
 | 
						|
    parser_cfg = dict()
 | 
						|
    parser_cfg["model"] = {"@architectures": "my_test_parser"}
 | 
						|
    nlp.add_pipe("parser", config=parser_cfg)
 | 
						|
    nlp.initialize()
 | 
						|
 | 
						|
    with make_tempdir() as d:
 | 
						|
        nlp.to_disk(d)
 | 
						|
        nlp2 = spacy.load(d)
 | 
						|
        model = nlp2.get_pipe("parser").model
 | 
						|
        model.get_ref("tok2vec")
 | 
						|
        # check that we have the correct settings, not the default ones
 | 
						|
        assert model.get_ref("upper").get_dim("nI") == 65
 | 
						|
        assert model.get_ref("lower").get_dim("nI") == 65
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "parser_config_string", [parser_config_string_upper, parser_config_string_no_upper]
 | 
						|
)
 | 
						|
def test_serialize_parser(parser_config_string):
 | 
						|
    """Create a non-default parser config to check nlp serializes it correctly"""
 | 
						|
    nlp = English()
 | 
						|
    model_config = Config().from_str(parser_config_string)
 | 
						|
    parser = nlp.add_pipe("parser", config=model_config)
 | 
						|
    parser.add_label("nsubj")
 | 
						|
    nlp.initialize()
 | 
						|
 | 
						|
    with make_tempdir() as d:
 | 
						|
        nlp.to_disk(d)
 | 
						|
        nlp2 = spacy.load(d)
 | 
						|
        model = nlp2.get_pipe("parser").model
 | 
						|
        model.get_ref("tok2vec")
 | 
						|
        # check that we have the correct settings, not the default ones
 | 
						|
        if model.attrs["has_upper"]:
 | 
						|
            assert model.get_ref("upper").get_dim("nI") == 66
 | 
						|
        assert model.get_ref("lower").get_dim("nI") == 66
 | 
						|
 | 
						|
 | 
						|
def test_config_nlp_roundtrip():
 | 
						|
    """Test that a config produced by the nlp object passes training config
 | 
						|
    validation."""
 | 
						|
    nlp = English()
 | 
						|
    nlp.add_pipe("entity_ruler")
 | 
						|
    nlp.add_pipe("ner")
 | 
						|
    new_nlp = load_model_from_config(nlp.config, auto_fill=False)
 | 
						|
    assert new_nlp.config == nlp.config
 | 
						|
    assert new_nlp.pipe_names == nlp.pipe_names
 | 
						|
    assert new_nlp._pipe_configs == nlp._pipe_configs
 | 
						|
    assert new_nlp._pipe_meta == nlp._pipe_meta
 | 
						|
    assert new_nlp._factory_meta == nlp._factory_meta
 | 
						|
 | 
						|
 | 
						|
def test_config_nlp_roundtrip_bytes_disk():
 | 
						|
    """Test that the config is serialized correctly and not interpolated
 | 
						|
    by mistake."""
 | 
						|
    nlp = English()
 | 
						|
    nlp_bytes = nlp.to_bytes()
 | 
						|
    new_nlp = English().from_bytes(nlp_bytes)
 | 
						|
    assert new_nlp.config == nlp.config
 | 
						|
    nlp = English()
 | 
						|
    with make_tempdir() as d:
 | 
						|
        nlp.to_disk(d)
 | 
						|
        new_nlp = spacy.load(d)
 | 
						|
    assert new_nlp.config == nlp.config
 | 
						|
 | 
						|
 | 
						|
def test_serialize_config_language_specific():
 | 
						|
    """Test that config serialization works as expected with language-specific
 | 
						|
    factories."""
 | 
						|
    name = "test_serialize_config_language_specific"
 | 
						|
 | 
						|
    @English.factory(name, default_config={"foo": 20})
 | 
						|
    def custom_factory(nlp: Language, name: str, foo: int):
 | 
						|
        return lambda doc: doc
 | 
						|
 | 
						|
    nlp = Language()
 | 
						|
    assert not nlp.has_factory(name)
 | 
						|
    nlp = English()
 | 
						|
    assert nlp.has_factory(name)
 | 
						|
    nlp.add_pipe(name, config={"foo": 100}, name="bar")
 | 
						|
    pipe_config = nlp.config["components"]["bar"]
 | 
						|
    assert pipe_config["foo"] == 100
 | 
						|
    assert pipe_config["factory"] == name
 | 
						|
 | 
						|
    with make_tempdir() as d:
 | 
						|
        nlp.to_disk(d)
 | 
						|
        nlp2 = spacy.load(d)
 | 
						|
    assert nlp2.has_factory(name)
 | 
						|
    assert nlp2.pipe_names == ["bar"]
 | 
						|
    assert nlp2.get_pipe_meta("bar").factory == name
 | 
						|
    pipe_config = nlp2.config["components"]["bar"]
 | 
						|
    assert pipe_config["foo"] == 100
 | 
						|
    assert pipe_config["factory"] == name
 | 
						|
 | 
						|
    config = Config().from_str(nlp2.config.to_str())
 | 
						|
    config["nlp"]["lang"] = "de"
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        # German doesn't have a factory, only English does
 | 
						|
        load_model_from_config(config)
 | 
						|
 | 
						|
 | 
						|
def test_serialize_config_missing_pipes():
 | 
						|
    config = Config().from_str(nlp_config_string)
 | 
						|
    config["components"].pop("tok2vec")
 | 
						|
    assert "tok2vec" in config["nlp"]["pipeline"]
 | 
						|
    assert "tok2vec" not in config["components"]
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        load_model_from_config(config, auto_fill=True)
 | 
						|
 | 
						|
 | 
						|
def test_config_overrides():
 | 
						|
    overrides_nested = {"nlp": {"lang": "de", "pipeline": ["tagger"]}}
 | 
						|
    overrides_dot = {"nlp.lang": "de", "nlp.pipeline": ["tagger"]}
 | 
						|
    # load_model from config with overrides passed directly to Config
 | 
						|
    config = Config().from_str(nlp_config_string, overrides=overrides_dot)
 | 
						|
    nlp = load_model_from_config(config, auto_fill=True)
 | 
						|
    assert isinstance(nlp, German)
 | 
						|
    assert nlp.pipe_names == ["tagger"]
 | 
						|
    # Serialized roundtrip with config passed in
 | 
						|
    base_config = Config().from_str(nlp_config_string)
 | 
						|
    base_nlp = load_model_from_config(base_config, auto_fill=True)
 | 
						|
    assert isinstance(base_nlp, English)
 | 
						|
    assert base_nlp.pipe_names == ["tok2vec", "tagger"]
 | 
						|
    with make_tempdir() as d:
 | 
						|
        base_nlp.to_disk(d)
 | 
						|
        nlp = spacy.load(d, config=overrides_nested)
 | 
						|
    assert isinstance(nlp, German)
 | 
						|
    assert nlp.pipe_names == ["tagger"]
 | 
						|
    with make_tempdir() as d:
 | 
						|
        base_nlp.to_disk(d)
 | 
						|
        nlp = spacy.load(d, config=overrides_dot)
 | 
						|
    assert isinstance(nlp, German)
 | 
						|
    assert nlp.pipe_names == ["tagger"]
 | 
						|
    with make_tempdir() as d:
 | 
						|
        base_nlp.to_disk(d)
 | 
						|
        nlp = spacy.load(d)
 | 
						|
    assert isinstance(nlp, English)
 | 
						|
    assert nlp.pipe_names == ["tok2vec", "tagger"]
 | 
						|
 | 
						|
 | 
						|
def test_config_interpolation():
 | 
						|
    config = Config().from_str(nlp_config_string, interpolate=False)
 | 
						|
    assert config["corpora"]["train"]["path"] == "${paths.train}"
 | 
						|
    interpolated = config.interpolate()
 | 
						|
    assert interpolated["corpora"]["train"]["path"] is None
 | 
						|
    nlp = English.from_config(config)
 | 
						|
    assert nlp.config["corpora"]["train"]["path"] == "${paths.train}"
 | 
						|
    # Ensure that variables are preserved in nlp config
 | 
						|
    width = "${components.tok2vec.model.width}"
 | 
						|
    assert config["components"]["tagger"]["model"]["tok2vec"]["width"] == width
 | 
						|
    assert nlp.config["components"]["tagger"]["model"]["tok2vec"]["width"] == width
 | 
						|
    interpolated2 = nlp.config.interpolate()
 | 
						|
    assert interpolated2["corpora"]["train"]["path"] is None
 | 
						|
    assert interpolated2["components"]["tagger"]["model"]["tok2vec"]["width"] == 342
 | 
						|
    nlp2 = English.from_config(interpolated)
 | 
						|
    assert nlp2.config["corpora"]["train"]["path"] is None
 | 
						|
    assert nlp2.config["components"]["tagger"]["model"]["tok2vec"]["width"] == 342
 | 
						|
 | 
						|
 | 
						|
def test_config_optional_sections():
 | 
						|
    config = Config().from_str(nlp_config_string)
 | 
						|
    config = DEFAULT_CONFIG.merge(config)
 | 
						|
    assert "pretraining" not in config
 | 
						|
    filled = registry.fill(config, schema=ConfigSchema, validate=False)
 | 
						|
    # Make sure that optional "pretraining" block doesn't default to None,
 | 
						|
    # which would (rightly) cause error because it'd result in a top-level
 | 
						|
    # key that's not a section (dict). Note that the following roundtrip is
 | 
						|
    # also how Config.interpolate works under the hood.
 | 
						|
    new_config = Config().from_str(filled.to_str())
 | 
						|
    assert new_config["pretraining"] == {}
 | 
						|
 | 
						|
 | 
						|
def test_config_auto_fill_extra_fields():
 | 
						|
    config = Config({"nlp": {"lang": "en"}, "training": {}})
 | 
						|
    assert load_model_from_config(config, auto_fill=True)
 | 
						|
    config = Config({"nlp": {"lang": "en"}, "training": {"extra": "hello"}})
 | 
						|
    nlp = load_model_from_config(config, auto_fill=True, validate=False)
 | 
						|
    assert "extra" not in nlp.config["training"]
 | 
						|
    # Make sure the config generated is valid
 | 
						|
    load_model_from_config(nlp.config)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "parser_config_string", [parser_config_string_upper, parser_config_string_no_upper]
 | 
						|
)
 | 
						|
def test_config_validate_literal(parser_config_string):
 | 
						|
    nlp = English()
 | 
						|
    config = Config().from_str(parser_config_string)
 | 
						|
    config["model"]["state_type"] = "nonsense"
 | 
						|
    with pytest.raises(ConfigValidationError):
 | 
						|
        nlp.add_pipe("parser", config=config)
 | 
						|
    config["model"]["state_type"] = "ner"
 | 
						|
    nlp.add_pipe("parser", config=config)
 | 
						|
 | 
						|
 | 
						|
def test_config_only_resolve_relevant_blocks():
 | 
						|
    """Test that only the relevant blocks are resolved in the different methods
 | 
						|
    and that invalid blocks are ignored if needed. For instance, the [initialize]
 | 
						|
    shouldn't be resolved at runtime.
 | 
						|
    """
 | 
						|
    nlp = English()
 | 
						|
    config = nlp.config
 | 
						|
    config["training"]["before_to_disk"] = {"@misc": "nonexistent"}
 | 
						|
    config["initialize"]["lookups"] = {"@misc": "nonexistent"}
 | 
						|
    # This shouldn't resolve [training] or [initialize]
 | 
						|
    nlp = load_model_from_config(config, auto_fill=True)
 | 
						|
    # This will raise for nonexistent value
 | 
						|
    with pytest.raises(RegistryError):
 | 
						|
        nlp.initialize()
 | 
						|
    nlp.config["initialize"]["lookups"] = None
 | 
						|
    nlp.initialize()
 | 
						|
 | 
						|
 | 
						|
def test_hyphen_in_config():
 | 
						|
    hyphen_config_str = """
 | 
						|
    [nlp]
 | 
						|
    lang = "en"
 | 
						|
    pipeline = ["my_punctual_component"]
 | 
						|
 | 
						|
    [components]
 | 
						|
 | 
						|
    [components.my_punctual_component]
 | 
						|
    factory = "my_punctual_component"
 | 
						|
    punctuation = ["?","-"]
 | 
						|
    """
 | 
						|
 | 
						|
    @spacy.Language.factory("my_punctual_component")
 | 
						|
    class MyPunctualComponent(object):
 | 
						|
        name = "my_punctual_component"
 | 
						|
 | 
						|
        def __init__(
 | 
						|
            self,
 | 
						|
            nlp,
 | 
						|
            name,
 | 
						|
            punctuation,
 | 
						|
        ):
 | 
						|
            self.punctuation = punctuation
 | 
						|
 | 
						|
    nlp = English.from_config(load_config_from_str(hyphen_config_str))
 | 
						|
    assert nlp.get_pipe("my_punctual_component").punctuation == ["?", "-"]
 |