spaCy/spacy/syntax/_neural.pyx
2016-07-31 19:02:45 +02:00

245 lines
9.4 KiB
Cython

# cython: infer_types=True
# cython: profile=True
from libc.stdint cimport uint64_t
from libc.string cimport memcpy, memset
from cymem.cymem cimport Pool, Address
from murmurhash.mrmr cimport hash64
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t, idx_t
from thinc.linear.avgtron cimport AveragedPerceptron
from thinc.linalg cimport VecVec
from thinc.structs cimport NeuralNetC, SparseArrayC, ExampleC
from thinc.structs cimport FeatureC
from thinc.extra.eg cimport Example
from preshed.maps cimport map_get
from preshed.maps cimport MapStruct
from ..structs cimport TokenC
from ._state cimport StateC
from ._parse_features cimport fill_context
from ._parse_features cimport CONTEXT_SIZE
from ._parse_features cimport fill_context
from ._parse_features cimport *
from .transition_system cimport TransitionSystem
from ..tokens.doc cimport Doc
cdef class ParserPerceptron(AveragedPerceptron):
@property
def widths(self):
return (self.extracter.nr_templ,)
def update(self, Example eg):
'''Does regression on negative cost. Sort of cute?'''
self.time += 1
cdef weight_t loss = 0.0
best = eg.best
for clas in range(eg.c.nr_class):
if not eg.c.is_valid[clas]:
continue
if eg.c.scores[clas] < eg.c.scores[best]:
continue
loss += (-eg.c.costs[clas] - eg.c.scores[clas]) ** 2
d_loss = 2 * (-eg.c.costs[clas] - eg.c.scores[clas])
step = d_loss * 0.001
for feat in eg.c.features[:eg.c.nr_feat]:
self.update_weight(feat.key, clas, feat.value * step)
return int(loss)
cdef int _set_featuresC(self, FeatureC* feats, const void* _state) nogil:
cdef atom_t[CONTEXT_SIZE] context
state = <const StateC*>_state
fill_context(context, state)
return self.extracter.set_features(feats, context)
def _update_from_history(self, TransitionSystem moves, Doc doc, history, weight_t grad):
cdef Pool mem = Pool()
features = <FeatureC*>mem.alloc(self.nr_feat, sizeof(FeatureC))
cdef StateClass stcls = StateClass.init(doc.c, doc.length)
moves.initialize_state(stcls.c)
cdef class_t clas
self.time += 1
for clas in history:
nr_feat = self._set_featuresC(features, stcls.c)
for feat in features[:nr_feat]:
self.update_weight(feat.key, clas, feat.value * grad)
moves.c[clas].do(stcls.c, moves.c[clas].label)
cdef class ParserNeuralNet(NeuralNet):
def __init__(self, shape, **kwargs):
vector_widths = [4] * 76
slots = [0, 1, 2, 3] # S0
slots += [4, 5, 6, 7] # S1
slots += [8, 9, 10, 11] # S2
slots += [12, 13, 14, 15] # S3+
slots += [16, 17, 18, 19] # B0
slots += [20, 21, 22, 23] # B1
slots += [24, 25, 26, 27] # B2
slots += [28, 29, 30, 31] # B3+
slots += [32, 33, 34, 35] * 2 # S0l, S0r
slots += [36, 37, 38, 39] * 2 # B0l, B0r
slots += [40, 41, 42, 43] * 2 # S1l, S1r
slots += [44, 45, 46, 47] * 2 # S2l, S2r
slots += [48, 49, 50, 51, 52, 53, 54, 55]
slots += [53, 54, 55, 56]
input_length = sum(vector_widths[slot] for slot in slots)
widths = [input_length] + shape
NeuralNet.__init__(self, widths, embed=(vector_widths, slots), **kwargs)
@property
def nr_feat(self):
return 2000
cdef int _set_featuresC(self, FeatureC* feats, const void* _state) nogil:
memset(feats, 0, 2000 * sizeof(FeatureC))
state = <const StateC*>_state
start = feats
feats = _add_token(feats, 0, state.S_(0), 1.0)
feats = _add_token(feats, 4, state.S_(1), 1.0)
feats = _add_token(feats, 8, state.S_(2), 1.0)
# Rest of the stack, with exponential decay
for i in range(3, state.stack_depth()):
feats = _add_token(feats, 12, state.S_(i), 1.0 * 0.5**(i-2))
feats = _add_token(feats, 16, state.B_(0), 1.0)
feats = _add_token(feats, 20, state.B_(1), 1.0)
feats = _add_token(feats, 24, state.B_(2), 1.0)
# Rest of the buffer, with exponential decay
for i in range(3, min(8, state.buffer_length())):
feats = _add_token(feats, 28, state.B_(i), 1.0 * 0.5**(i-2))
feats = _add_subtree(feats, 32, state, state.S(0))
feats = _add_subtree(feats, 40, state, state.B(0))
feats = _add_subtree(feats, 48, state, state.S(1))
feats = _add_subtree(feats, 56, state, state.S(2))
feats = _add_pos_bigram(feats, 64, state.S_(0), state.B_(0))
feats = _add_pos_bigram(feats, 65, state.S_(1), state.S_(0))
feats = _add_pos_bigram(feats, 66, state.S_(1), state.B_(0))
feats = _add_pos_bigram(feats, 67, state.S_(0), state.B_(1))
feats = _add_pos_bigram(feats, 68, state.S_(0), state.R_(state.S(0), 1))
feats = _add_pos_bigram(feats, 69, state.S_(0), state.R_(state.S(0), 2))
feats = _add_pos_bigram(feats, 70, state.S_(0), state.L_(state.S(0), 1))
feats = _add_pos_bigram(feats, 71, state.S_(0), state.L_(state.S(0), 2))
feats = _add_pos_trigram(feats, 72, state.S_(1), state.S_(0), state.B_(0))
feats = _add_pos_trigram(feats, 73, state.S_(0), state.B_(0), state.B_(1))
feats = _add_pos_trigram(feats, 74, state.S_(0), state.R_(state.S(0), 1),
state.R_(state.S(0), 2))
feats = _add_pos_trigram(feats, 75, state.S_(0), state.L_(state.S(0), 1),
state.L_(state.S(0), 2))
return feats - start
cdef void _set_delta_lossC(self, weight_t* delta_loss,
const weight_t* cost, const weight_t* scores) nogil:
for i in range(self.c.widths[self.c.nr_layer-1]):
delta_loss[i] = cost[i]
cdef void _softmaxC(self, weight_t* out) nogil:
pass
def _update_from_history(self, TransitionSystem moves, Doc doc, history, weight_t grad):
cdef Pool mem = Pool()
features = <FeatureC*>mem.alloc(self.nr_feat, sizeof(FeatureC))
is_valid = <int*>mem.alloc(moves.n_moves, sizeof(int))
costs = <weight_t*>mem.alloc(moves.n_moves, sizeof(weight_t))
stcls = StateClass.init(doc.c, doc.length)
moves.initialize_state(stcls.c)
cdef uint64_t[2] key
key[0] = hash64(doc.c, sizeof(TokenC) * doc.length, 0)
key[1] = 0
cdef uint64_t clas
for clas in history:
memset(costs, 0, moves.n_moves * sizeof(costs[0]))
for i in range(moves.n_moves):
is_valid[i] = 1
nr_feat = self._set_featuresC(features, stcls.c)
moves.set_valid(is_valid, stcls.c)
# Update with a sparse gradient: everything's 0, except our class.
# Remember, this is a component of the global update. It's not our
# "job" here to think about the other beam candidates. We just want
# to work on this sequence. However, other beam candidates will
# have gradients that refer to the same state.
# We therefore have a key that indicates the current sequence, so that
# the model can merge updates that refer to the same state together,
# by summing their gradients.
costs[clas] = grad
self.updateC(features,
nr_feat, costs, is_valid, False, key[0])
moves.c[clas].do(stcls.c, moves.c[clas].label)
# Build a hash of the state sequence.
# Position 0 represents the previous sequence, position 1 the new class.
# So we want to do:
# key.prev = hash((key.prev, key.new))
# key.new = clas
key[1] = clas
key[0] = hash64(key, sizeof(key), 0)
cdef inline FeatureC* _add_token(FeatureC* feats,
int slot, const TokenC* token, weight_t value) nogil:
# Word
feats.i = slot
feats.key = token.lex.norm
feats.value = value
feats += 1
# POS tag
feats.i = slot+1
feats.key = token.tag
feats.value = value
feats += 1
# Dependency label
feats.i = slot+2
feats.key = token.dep
feats.value = value
feats += 1
# Word, label, tag
feats.i = slot+3
cdef uint64_t key[3]
key[0] = token.lex.cluster
key[1] = token.tag
key[2] = token.dep
feats.key = hash64(key, sizeof(key), 0)
feats.value = value
feats += 1
return feats
cdef inline FeatureC* _add_subtree(FeatureC* feats, int slot, const StateC* state, int t) nogil:
value = 1.0
for i in range(state.n_R(t)):
feats = _add_token(feats, slot, state.R_(t, i+1), value)
value *= 0.5
slot += 4
value = 1.0
for i in range(state.n_L(t)):
feats = _add_token(feats, slot, state.L_(t, i+1), value)
value *= 0.5
return feats
cdef inline FeatureC* _add_pos_bigram(FeatureC* feat, int slot,
const TokenC* t1, const TokenC* t2) nogil:
cdef uint64_t[2] key
key[0] = t1.tag
key[1] = t2.tag
feat.i = slot
feat.key = hash64(key, sizeof(key), slot)
feat.value = 1.0
return feat+1
cdef inline FeatureC* _add_pos_trigram(FeatureC* feat, int slot,
const TokenC* t1, const TokenC* t2, const TokenC* t3) nogil:
cdef uint64_t[3] key
key[0] = t1.tag
key[1] = t2.tag
key[2] = t3.tag
feat.i = slot
feat.key = hash64(key, sizeof(key), slot)
feat.value = 1.0
return feat+1