mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			583 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			583 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from typing import List, Sequence, Dict, Any, Tuple, Optional
 | |
| from pathlib import Path
 | |
| from collections import Counter
 | |
| import sys
 | |
| import srsly
 | |
| from wasabi import Printer, MESSAGES, msg
 | |
| import typer
 | |
| 
 | |
| from ._util import app, Arg, Opt, show_validation_error, parse_config_overrides
 | |
| from ._util import import_code, debug_cli
 | |
| from ..training import Example
 | |
| from ..training.initialize import get_sourced_components
 | |
| from ..schemas import ConfigSchemaTraining
 | |
| from ..pipeline._parser_internals import nonproj
 | |
| from ..language import Language
 | |
| from ..util import registry, resolve_dot_names
 | |
| from .. import util
 | |
| 
 | |
| 
 | |
| # Minimum number of expected occurrences of NER label in data to train new label
 | |
| NEW_LABEL_THRESHOLD = 50
 | |
| # Minimum number of expected occurrences of dependency labels
 | |
| DEP_LABEL_THRESHOLD = 20
 | |
| # Minimum number of expected examples to train a new pipeline
 | |
| BLANK_MODEL_MIN_THRESHOLD = 100
 | |
| BLANK_MODEL_THRESHOLD = 2000
 | |
| 
 | |
| 
 | |
| @debug_cli.command(
 | |
|     "data", context_settings={"allow_extra_args": True, "ignore_unknown_options": True}
 | |
| )
 | |
| @app.command(
 | |
|     "debug-data",
 | |
|     context_settings={"allow_extra_args": True, "ignore_unknown_options": True},
 | |
|     hidden=True,  # hide this from main CLI help but still allow it to work with warning
 | |
| )
 | |
| def debug_data_cli(
 | |
|     # fmt: off
 | |
|     ctx: typer.Context,  # This is only used to read additional arguments
 | |
|     config_path: Path = Arg(..., help="Path to config file", exists=True),
 | |
|     code_path: Optional[Path] = Opt(None, "--code-path", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
 | |
|     ignore_warnings: bool = Opt(False, "--ignore-warnings", "-IW", help="Ignore warnings, only show stats and errors"),
 | |
|     verbose: bool = Opt(False, "--verbose", "-V", help="Print additional information and explanations"),
 | |
|     no_format: bool = Opt(False, "--no-format", "-NF", help="Don't pretty-print the results"),
 | |
|     # fmt: on
 | |
| ):
 | |
|     """
 | |
|     Analyze, debug and validate your training and development data. Outputs
 | |
|     useful stats, and can help you find problems like invalid entity annotations,
 | |
|     cyclic dependencies, low data labels and more.
 | |
| 
 | |
|     DOCS: https://nightly.spacy.io/api/cli#debug-data
 | |
|     """
 | |
|     if ctx.command.name == "debug-data":
 | |
|         msg.warn(
 | |
|             "The debug-data command is now available via the 'debug data' "
 | |
|             "subcommand (without the hyphen). You can run python -m spacy debug "
 | |
|             "--help for an overview of the other available debugging commands."
 | |
|         )
 | |
|     overrides = parse_config_overrides(ctx.args)
 | |
|     import_code(code_path)
 | |
|     debug_data(
 | |
|         config_path,
 | |
|         config_overrides=overrides,
 | |
|         ignore_warnings=ignore_warnings,
 | |
|         verbose=verbose,
 | |
|         no_format=no_format,
 | |
|         silent=False,
 | |
|     )
 | |
| 
 | |
| 
 | |
| def debug_data(
 | |
|     config_path: Path,
 | |
|     *,
 | |
|     config_overrides: Dict[str, Any] = {},
 | |
|     ignore_warnings: bool = False,
 | |
|     verbose: bool = False,
 | |
|     no_format: bool = True,
 | |
|     silent: bool = True,
 | |
| ):
 | |
|     msg = Printer(
 | |
|         no_print=silent, pretty=not no_format, ignore_warnings=ignore_warnings
 | |
|     )
 | |
|     # Make sure all files and paths exists if they are needed
 | |
|     with show_validation_error(config_path):
 | |
|         cfg = util.load_config(config_path, overrides=config_overrides)
 | |
|         nlp = util.load_model_from_config(cfg)
 | |
|         config = nlp.config.interpolate()
 | |
|         T = registry.resolve(config["training"], schema=ConfigSchemaTraining)
 | |
|     # Use original config here, not resolved version
 | |
|     sourced_components = get_sourced_components(cfg)
 | |
|     frozen_components = T["frozen_components"]
 | |
|     resume_components = [p for p in sourced_components if p not in frozen_components]
 | |
|     pipeline = nlp.pipe_names
 | |
|     factory_names = [nlp.get_pipe_meta(pipe).factory for pipe in nlp.pipe_names]
 | |
|     msg.divider("Data file validation")
 | |
| 
 | |
|     # Create the gold corpus to be able to better analyze data
 | |
|     dot_names = [T["train_corpus"], T["dev_corpus"]]
 | |
|     train_corpus, dev_corpus = resolve_dot_names(config, dot_names)
 | |
|     train_dataset = list(train_corpus(nlp))
 | |
|     dev_dataset = list(dev_corpus(nlp))
 | |
|     msg.good("Corpus is loadable")
 | |
| 
 | |
|     nlp.initialize(lambda: train_dataset)
 | |
|     msg.good("Pipeline can be initialized with data")
 | |
| 
 | |
|     # Create all gold data here to avoid iterating over the train_dataset constantly
 | |
|     gold_train_data = _compile_gold(train_dataset, factory_names, nlp, make_proj=True)
 | |
|     gold_train_unpreprocessed_data = _compile_gold(
 | |
|         train_dataset, factory_names, nlp, make_proj=False
 | |
|     )
 | |
|     gold_dev_data = _compile_gold(dev_dataset, factory_names, nlp, make_proj=True)
 | |
| 
 | |
|     train_texts = gold_train_data["texts"]
 | |
|     dev_texts = gold_dev_data["texts"]
 | |
|     frozen_components = T["frozen_components"]
 | |
| 
 | |
|     msg.divider("Training stats")
 | |
|     msg.text(f"Language: {nlp.lang}")
 | |
|     msg.text(f"Training pipeline: {', '.join(pipeline)}")
 | |
|     if resume_components:
 | |
|         msg.text(f"Components from other pipelines: {', '.join(resume_components)}")
 | |
|     if frozen_components:
 | |
|         msg.text(f"Frozen components: {', '.join(frozen_components)}")
 | |
|     msg.text(f"{len(train_dataset)} training docs")
 | |
|     msg.text(f"{len(dev_dataset)} evaluation docs")
 | |
| 
 | |
|     if not len(gold_dev_data):
 | |
|         msg.fail("No evaluation docs")
 | |
|     overlap = len(train_texts.intersection(dev_texts))
 | |
|     if overlap:
 | |
|         msg.warn(f"{overlap} training examples also in evaluation data")
 | |
|     else:
 | |
|         msg.good("No overlap between training and evaluation data")
 | |
|     # TODO: make this feedback more fine-grained and report on updated
 | |
|     # components vs. blank components
 | |
|     if not resume_components and len(train_dataset) < BLANK_MODEL_THRESHOLD:
 | |
|         text = f"Low number of examples to train a new pipeline ({len(train_dataset)})"
 | |
|         if len(train_dataset) < BLANK_MODEL_MIN_THRESHOLD:
 | |
|             msg.fail(text)
 | |
|         else:
 | |
|             msg.warn(text)
 | |
|         msg.text(
 | |
|             f"It's recommended to use at least {BLANK_MODEL_THRESHOLD} examples "
 | |
|             f"(minimum {BLANK_MODEL_MIN_THRESHOLD})",
 | |
|             show=verbose,
 | |
|         )
 | |
| 
 | |
|     msg.divider("Vocab & Vectors")
 | |
|     n_words = gold_train_data["n_words"]
 | |
|     msg.info(
 | |
|         f"{n_words} total word(s) in the data ({len(gold_train_data['words'])} unique)"
 | |
|     )
 | |
|     if gold_train_data["n_misaligned_words"] > 0:
 | |
|         n_misaligned = gold_train_data["n_misaligned_words"]
 | |
|         msg.warn(f"{n_misaligned} misaligned tokens in the training data")
 | |
|     if gold_dev_data["n_misaligned_words"] > 0:
 | |
|         n_misaligned = gold_dev_data["n_misaligned_words"]
 | |
|         msg.warn(f"{n_misaligned} misaligned tokens in the dev data")
 | |
|     most_common_words = gold_train_data["words"].most_common(10)
 | |
|     msg.text(
 | |
|         f"10 most common words: {_format_labels(most_common_words, counts=True)}",
 | |
|         show=verbose,
 | |
|     )
 | |
|     if len(nlp.vocab.vectors):
 | |
|         msg.info(
 | |
|             f"{len(nlp.vocab.vectors)} vectors ({nlp.vocab.vectors.n_keys} "
 | |
|             f"unique keys, {nlp.vocab.vectors_length} dimensions)"
 | |
|         )
 | |
|         n_missing_vectors = sum(gold_train_data["words_missing_vectors"].values())
 | |
|         msg.warn(
 | |
|             "{} words in training data without vectors ({:0.2f}%)".format(
 | |
|                 n_missing_vectors, n_missing_vectors / gold_train_data["n_words"]
 | |
|             ),
 | |
|         )
 | |
|         msg.text(
 | |
|             "10 most common words without vectors: {}".format(
 | |
|                 _format_labels(
 | |
|                     gold_train_data["words_missing_vectors"].most_common(10),
 | |
|                     counts=True,
 | |
|                 )
 | |
|             ),
 | |
|             show=verbose,
 | |
|         )
 | |
|     else:
 | |
|         msg.info("No word vectors present in the package")
 | |
| 
 | |
|     if "ner" in factory_names:
 | |
|         # Get all unique NER labels present in the data
 | |
|         labels = set(
 | |
|             label for label in gold_train_data["ner"] if label not in ("O", "-", None)
 | |
|         )
 | |
|         label_counts = gold_train_data["ner"]
 | |
|         model_labels = _get_labels_from_model(nlp, "ner")
 | |
|         new_labels = [l for l in labels if l not in model_labels]
 | |
|         existing_labels = [l for l in labels if l in model_labels]
 | |
|         has_low_data_warning = False
 | |
|         has_no_neg_warning = False
 | |
|         has_ws_ents_error = False
 | |
|         has_punct_ents_warning = False
 | |
| 
 | |
|         msg.divider("Named Entity Recognition")
 | |
|         msg.info(
 | |
|             f"{len(new_labels)} new label(s), {len(existing_labels)} existing label(s)"
 | |
|         )
 | |
|         missing_values = label_counts["-"]
 | |
|         msg.text(f"{missing_values} missing value(s) (tokens with '-' label)")
 | |
|         for label in new_labels:
 | |
|             if len(label) == 0:
 | |
|                 msg.fail("Empty label found in new labels")
 | |
|         if new_labels:
 | |
|             labels_with_counts = [
 | |
|                 (label, count)
 | |
|                 for label, count in label_counts.most_common()
 | |
|                 if label != "-"
 | |
|             ]
 | |
|             labels_with_counts = _format_labels(labels_with_counts, counts=True)
 | |
|             msg.text(f"New: {labels_with_counts}", show=verbose)
 | |
|         if existing_labels:
 | |
|             msg.text(f"Existing: {_format_labels(existing_labels)}", show=verbose)
 | |
|         if gold_train_data["ws_ents"]:
 | |
|             msg.fail(f"{gold_train_data['ws_ents']} invalid whitespace entity spans")
 | |
|             has_ws_ents_error = True
 | |
| 
 | |
|         if gold_train_data["punct_ents"]:
 | |
|             msg.warn(f"{gold_train_data['punct_ents']} entity span(s) with punctuation")
 | |
|             has_punct_ents_warning = True
 | |
| 
 | |
|         for label in new_labels:
 | |
|             if label_counts[label] <= NEW_LABEL_THRESHOLD:
 | |
|                 msg.warn(
 | |
|                     f"Low number of examples for new label '{label}' ({label_counts[label]})"
 | |
|                 )
 | |
|                 has_low_data_warning = True
 | |
| 
 | |
|                 with msg.loading("Analyzing label distribution..."):
 | |
|                     neg_docs = _get_examples_without_label(train_dataset, label)
 | |
|                 if neg_docs == 0:
 | |
|                     msg.warn(f"No examples for texts WITHOUT new label '{label}'")
 | |
|                     has_no_neg_warning = True
 | |
| 
 | |
|         if not has_low_data_warning:
 | |
|             msg.good("Good amount of examples for all labels")
 | |
|         if not has_no_neg_warning:
 | |
|             msg.good("Examples without occurrences available for all labels")
 | |
|         if not has_ws_ents_error:
 | |
|             msg.good("No entities consisting of or starting/ending with whitespace")
 | |
|         if not has_punct_ents_warning:
 | |
|             msg.good("No entities consisting of or starting/ending with punctuation")
 | |
| 
 | |
|         if has_low_data_warning:
 | |
|             msg.text(
 | |
|                 f"To train a new entity type, your data should include at "
 | |
|                 f"least {NEW_LABEL_THRESHOLD} instances of the new label",
 | |
|                 show=verbose,
 | |
|             )
 | |
|         if has_no_neg_warning:
 | |
|             msg.text(
 | |
|                 "Training data should always include examples of entities "
 | |
|                 "in context, as well as examples without a given entity "
 | |
|                 "type.",
 | |
|                 show=verbose,
 | |
|             )
 | |
|         if has_ws_ents_error:
 | |
|             msg.text(
 | |
|                 "As of spaCy v2.1.0, entity spans consisting of or starting/ending "
 | |
|                 "with whitespace characters are considered invalid."
 | |
|             )
 | |
| 
 | |
|         if has_punct_ents_warning:
 | |
|             msg.text(
 | |
|                 "Entity spans consisting of or starting/ending "
 | |
|                 "with punctuation can not be trained with a noise level > 0."
 | |
|             )
 | |
| 
 | |
|     if "textcat" in factory_names:
 | |
|         msg.divider("Text Classification")
 | |
|         labels = [label for label in gold_train_data["cats"]]
 | |
|         model_labels = _get_labels_from_model(nlp, "textcat")
 | |
|         new_labels = [l for l in labels if l not in model_labels]
 | |
|         existing_labels = [l for l in labels if l in model_labels]
 | |
|         msg.info(
 | |
|             f"Text Classification: {len(new_labels)} new label(s), "
 | |
|             f"{len(existing_labels)} existing label(s)"
 | |
|         )
 | |
|         if new_labels:
 | |
|             labels_with_counts = _format_labels(
 | |
|                 gold_train_data["cats"].most_common(), counts=True
 | |
|             )
 | |
|             msg.text(f"New: {labels_with_counts}", show=verbose)
 | |
|         if existing_labels:
 | |
|             msg.text(f"Existing: {_format_labels(existing_labels)}", show=verbose)
 | |
|         if set(gold_train_data["cats"]) != set(gold_dev_data["cats"]):
 | |
|             msg.fail(
 | |
|                 f"The train and dev labels are not the same. "
 | |
|                 f"Train labels: {_format_labels(gold_train_data['cats'])}. "
 | |
|                 f"Dev labels: {_format_labels(gold_dev_data['cats'])}."
 | |
|             )
 | |
|         if gold_train_data["n_cats_multilabel"] > 0:
 | |
|             msg.info(
 | |
|                 "The train data contains instances without "
 | |
|                 "mutually-exclusive classes. Use '--textcat-multilabel' "
 | |
|                 "when training."
 | |
|             )
 | |
|             if gold_dev_data["n_cats_multilabel"] == 0:
 | |
|                 msg.warn(
 | |
|                     "Potential train/dev mismatch: the train data contains "
 | |
|                     "instances without mutually-exclusive classes while the "
 | |
|                     "dev data does not."
 | |
|                 )
 | |
|         else:
 | |
|             msg.info(
 | |
|                 "The train data contains only instances with "
 | |
|                 "mutually-exclusive classes."
 | |
|             )
 | |
|             if gold_dev_data["n_cats_multilabel"] > 0:
 | |
|                 msg.fail(
 | |
|                     "Train/dev mismatch: the dev data contains instances "
 | |
|                     "without mutually-exclusive classes while the train data "
 | |
|                     "contains only instances with mutually-exclusive classes."
 | |
|                 )
 | |
| 
 | |
|     if "tagger" in factory_names:
 | |
|         msg.divider("Part-of-speech Tagging")
 | |
|         labels = [label for label in gold_train_data["tags"]]
 | |
|         # TODO: does this need to be updated?
 | |
|         msg.info(f"{len(labels)} label(s) in data")
 | |
|         labels_with_counts = _format_labels(
 | |
|             gold_train_data["tags"].most_common(), counts=True
 | |
|         )
 | |
|         msg.text(labels_with_counts, show=verbose)
 | |
| 
 | |
|     if "parser" in factory_names:
 | |
|         has_low_data_warning = False
 | |
|         msg.divider("Dependency Parsing")
 | |
| 
 | |
|         # profile sentence length
 | |
|         msg.info(
 | |
|             f"Found {gold_train_data['n_sents']} sentence(s) with an average "
 | |
|             f"length of {gold_train_data['n_words'] / gold_train_data['n_sents']:.1f} words."
 | |
|         )
 | |
| 
 | |
|         # check for documents with multiple sentences
 | |
|         sents_per_doc = gold_train_data["n_sents"] / len(gold_train_data["texts"])
 | |
|         if sents_per_doc < 1.1:
 | |
|             msg.warn(
 | |
|                 f"The training data contains {sents_per_doc:.2f} sentences per "
 | |
|                 f"document. When there are very few documents containing more "
 | |
|                 f"than one sentence, the parser will not learn how to segment "
 | |
|                 f"longer texts into sentences."
 | |
|             )
 | |
| 
 | |
|         # profile labels
 | |
|         labels_train = [label for label in gold_train_data["deps"]]
 | |
|         labels_train_unpreprocessed = [
 | |
|             label for label in gold_train_unpreprocessed_data["deps"]
 | |
|         ]
 | |
|         labels_dev = [label for label in gold_dev_data["deps"]]
 | |
| 
 | |
|         if gold_train_unpreprocessed_data["n_nonproj"] > 0:
 | |
|             n_nonproj = gold_train_unpreprocessed_data["n_nonproj"]
 | |
|             msg.info(f"Found {n_nonproj} nonprojective train sentence(s)")
 | |
|         if gold_dev_data["n_nonproj"] > 0:
 | |
|             n_nonproj = gold_dev_data["n_nonproj"]
 | |
|             msg.info(f"Found {n_nonproj} nonprojective dev sentence(s)")
 | |
|         msg.info(f"{len(labels_train_unpreprocessed)} label(s) in train data")
 | |
|         msg.info(f"{len(labels_train)} label(s) in projectivized train data")
 | |
|         labels_with_counts = _format_labels(
 | |
|             gold_train_unpreprocessed_data["deps"].most_common(), counts=True
 | |
|         )
 | |
|         msg.text(labels_with_counts, show=verbose)
 | |
| 
 | |
|         # rare labels in train
 | |
|         for label in gold_train_unpreprocessed_data["deps"]:
 | |
|             if gold_train_unpreprocessed_data["deps"][label] <= DEP_LABEL_THRESHOLD:
 | |
|                 msg.warn(
 | |
|                     f"Low number of examples for label '{label}' "
 | |
|                     f"({gold_train_unpreprocessed_data['deps'][label]})"
 | |
|                 )
 | |
|                 has_low_data_warning = True
 | |
| 
 | |
|         # rare labels in projectivized train
 | |
|         rare_projectivized_labels = []
 | |
|         for label in gold_train_data["deps"]:
 | |
|             if gold_train_data["deps"][label] <= DEP_LABEL_THRESHOLD and "||" in label:
 | |
|                 rare_projectivized_labels.append(
 | |
|                     f"{label}: {gold_train_data['deps'][label]}"
 | |
|                 )
 | |
| 
 | |
|         if len(rare_projectivized_labels) > 0:
 | |
|             msg.warn(
 | |
|                 f"Low number of examples for {len(rare_projectivized_labels)} "
 | |
|                 "label(s) in the projectivized dependency trees used for "
 | |
|                 "training. You may want to projectivize labels such as punct "
 | |
|                 "before training in order to improve parser performance."
 | |
|             )
 | |
|             msg.warn(
 | |
|                 f"Projectivized labels with low numbers of examples: ",
 | |
|                 ", ".join(rare_projectivized_labels),
 | |
|                 show=verbose,
 | |
|             )
 | |
|             has_low_data_warning = True
 | |
| 
 | |
|         # labels only in train
 | |
|         if set(labels_train) - set(labels_dev):
 | |
|             msg.warn(
 | |
|                 "The following labels were found only in the train data:",
 | |
|                 ", ".join(set(labels_train) - set(labels_dev)),
 | |
|                 show=verbose,
 | |
|             )
 | |
| 
 | |
|         # labels only in dev
 | |
|         if set(labels_dev) - set(labels_train):
 | |
|             msg.warn(
 | |
|                 "The following labels were found only in the dev data:",
 | |
|                 ", ".join(set(labels_dev) - set(labels_train)),
 | |
|                 show=verbose,
 | |
|             )
 | |
| 
 | |
|         if has_low_data_warning:
 | |
|             msg.text(
 | |
|                 f"To train a parser, your data should include at "
 | |
|                 f"least {DEP_LABEL_THRESHOLD} instances of each label.",
 | |
|                 show=verbose,
 | |
|             )
 | |
| 
 | |
|         # multiple root labels
 | |
|         if len(gold_train_unpreprocessed_data["roots"]) > 1:
 | |
|             msg.warn(
 | |
|                 f"Multiple root labels "
 | |
|                 f"({', '.join(gold_train_unpreprocessed_data['roots'])}) "
 | |
|                 f"found in training data. spaCy's parser uses a single root "
 | |
|                 f"label ROOT so this distinction will not be available."
 | |
|             )
 | |
| 
 | |
|         # these should not happen, but just in case
 | |
|         if gold_train_data["n_nonproj"] > 0:
 | |
|             msg.fail(
 | |
|                 f"Found {gold_train_data['n_nonproj']} nonprojective "
 | |
|                 f"projectivized train sentence(s)"
 | |
|             )
 | |
|         if gold_train_data["n_cycles"] > 0:
 | |
|             msg.fail(
 | |
|                 f"Found {gold_train_data['n_cycles']} projectivized train sentence(s) with cycles"
 | |
|             )
 | |
| 
 | |
|     msg.divider("Summary")
 | |
|     good_counts = msg.counts[MESSAGES.GOOD]
 | |
|     warn_counts = msg.counts[MESSAGES.WARN]
 | |
|     fail_counts = msg.counts[MESSAGES.FAIL]
 | |
|     if good_counts:
 | |
|         msg.good(f"{good_counts} {'check' if good_counts == 1 else 'checks'} passed")
 | |
|     if warn_counts:
 | |
|         msg.warn(f"{warn_counts} {'warning' if warn_counts == 1 else 'warnings'}")
 | |
|     if fail_counts:
 | |
|         msg.fail(f"{fail_counts} {'error' if fail_counts == 1 else 'errors'}")
 | |
|         sys.exit(1)
 | |
| 
 | |
| 
 | |
| def _load_file(file_path: Path, msg: Printer) -> None:
 | |
|     file_name = file_path.parts[-1]
 | |
|     if file_path.suffix == ".json":
 | |
|         with msg.loading(f"Loading {file_name}..."):
 | |
|             data = srsly.read_json(file_path)
 | |
|         msg.good(f"Loaded {file_name}")
 | |
|         return data
 | |
|     elif file_path.suffix == ".jsonl":
 | |
|         with msg.loading(f"Loading {file_name}..."):
 | |
|             data = srsly.read_jsonl(file_path)
 | |
|         msg.good(f"Loaded {file_name}")
 | |
|         return data
 | |
|     msg.fail(
 | |
|         f"Can't load file extension {file_path.suffix}",
 | |
|         "Expected .json or .jsonl",
 | |
|         exits=1,
 | |
|     )
 | |
| 
 | |
| 
 | |
| def _compile_gold(
 | |
|     examples: Sequence[Example],
 | |
|     factory_names: List[str],
 | |
|     nlp: Language,
 | |
|     make_proj: bool,
 | |
| ) -> Dict[str, Any]:
 | |
|     data = {
 | |
|         "ner": Counter(),
 | |
|         "cats": Counter(),
 | |
|         "tags": Counter(),
 | |
|         "deps": Counter(),
 | |
|         "words": Counter(),
 | |
|         "roots": Counter(),
 | |
|         "ws_ents": 0,
 | |
|         "punct_ents": 0,
 | |
|         "n_words": 0,
 | |
|         "n_misaligned_words": 0,
 | |
|         "words_missing_vectors": Counter(),
 | |
|         "n_sents": 0,
 | |
|         "n_nonproj": 0,
 | |
|         "n_cycles": 0,
 | |
|         "n_cats_multilabel": 0,
 | |
|         "texts": set(),
 | |
|     }
 | |
|     for eg in examples:
 | |
|         gold = eg.reference
 | |
|         doc = eg.predicted
 | |
|         valid_words = [x for x in gold if x is not None]
 | |
|         data["words"].update(valid_words)
 | |
|         data["n_words"] += len(valid_words)
 | |
|         data["n_misaligned_words"] += len(gold) - len(valid_words)
 | |
|         data["texts"].add(doc.text)
 | |
|         if len(nlp.vocab.vectors):
 | |
|             for word in valid_words:
 | |
|                 if nlp.vocab.strings[word] not in nlp.vocab.vectors:
 | |
|                     data["words_missing_vectors"].update([word])
 | |
|         if "ner" in factory_names:
 | |
|             for i, label in enumerate(eg.get_aligned_ner()):
 | |
|                 if label is None:
 | |
|                     continue
 | |
|                 if label.startswith(("B-", "U-", "L-")) and doc[i].is_space:
 | |
|                     # "Illegal" whitespace entity
 | |
|                     data["ws_ents"] += 1
 | |
|                 if label.startswith(("B-", "U-", "L-")) and doc[i].text in [
 | |
|                     ".",
 | |
|                     "'",
 | |
|                     "!",
 | |
|                     "?",
 | |
|                     ",",
 | |
|                 ]:
 | |
|                     # punctuation entity: could be replaced by whitespace when training with noise,
 | |
|                     # so add a warning to alert the user to this unexpected side effect.
 | |
|                     data["punct_ents"] += 1
 | |
|                 if label.startswith(("B-", "U-")):
 | |
|                     combined_label = label.split("-")[1]
 | |
|                     data["ner"][combined_label] += 1
 | |
|                 elif label == "-":
 | |
|                     data["ner"]["-"] += 1
 | |
|         if "textcat" in factory_names:
 | |
|             data["cats"].update(gold.cats)
 | |
|             if list(gold.cats.values()).count(1.0) != 1:
 | |
|                 data["n_cats_multilabel"] += 1
 | |
|         if "tagger" in factory_names:
 | |
|             tags = eg.get_aligned("TAG", as_string=True)
 | |
|             data["tags"].update([x for x in tags if x is not None])
 | |
|         if "parser" in factory_names:
 | |
|             aligned_heads, aligned_deps = eg.get_aligned_parse(projectivize=make_proj)
 | |
|             data["deps"].update([x for x in aligned_deps if x is not None])
 | |
|             for i, (dep, head) in enumerate(zip(aligned_deps, aligned_heads)):
 | |
|                 if head == i:
 | |
|                     data["roots"].update([dep])
 | |
|                     data["n_sents"] += 1
 | |
|             if nonproj.is_nonproj_tree(aligned_heads):
 | |
|                 data["n_nonproj"] += 1
 | |
|             if nonproj.contains_cycle(aligned_heads):
 | |
|                 data["n_cycles"] += 1
 | |
|     return data
 | |
| 
 | |
| 
 | |
| def _format_labels(labels: List[Tuple[str, int]], counts: bool = False) -> str:
 | |
|     if counts:
 | |
|         return ", ".join([f"'{l}' ({c})" for l, c in labels])
 | |
|     return ", ".join([f"'{l}'" for l in labels])
 | |
| 
 | |
| 
 | |
| def _get_examples_without_label(data: Sequence[Example], label: str) -> int:
 | |
|     count = 0
 | |
|     for eg in data:
 | |
|         labels = [
 | |
|             label.split("-")[1]
 | |
|             for label in eg.get_aligned_ner()
 | |
|             if label not in ("O", "-", None)
 | |
|         ]
 | |
|         if label not in labels:
 | |
|             count += 1
 | |
|     return count
 | |
| 
 | |
| 
 | |
| def _get_labels_from_model(nlp: Language, pipe_name: str) -> Sequence[str]:
 | |
|     if pipe_name not in nlp.pipe_names:
 | |
|         return set()
 | |
|     pipe = nlp.get_pipe(pipe_name)
 | |
|     return pipe.labels
 |