mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			247 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			247 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from typing import Dict, Any, Optional, Iterable
 | |
| from pathlib import Path
 | |
| 
 | |
| from spacy.training import Example
 | |
| from spacy.util import resolve_dot_names
 | |
| from wasabi import msg
 | |
| from thinc.api import fix_random_seed, set_dropout_rate, Adam
 | |
| from thinc.api import Model, data_validation, set_gpu_allocator
 | |
| import typer
 | |
| 
 | |
| from ._util import Arg, Opt, debug_cli, show_validation_error
 | |
| from ._util import parse_config_overrides, string_to_list, setup_gpu
 | |
| from ..schemas import ConfigSchemaTraining
 | |
| from ..util import registry
 | |
| from .. import util
 | |
| 
 | |
| 
 | |
| @debug_cli.command(
 | |
|     "model",
 | |
|     context_settings={"allow_extra_args": True, "ignore_unknown_options": True},
 | |
| )
 | |
| def debug_model_cli(
 | |
|     # fmt: off
 | |
|     ctx: typer.Context,  # This is only used to read additional arguments
 | |
|     config_path: Path = Arg(..., help="Path to config file", exists=True),
 | |
|     component: str = Arg(..., help="Name of the pipeline component of which the model should be analysed"),
 | |
|     layers: str = Opt("", "--layers", "-l", help="Comma-separated names of layer IDs to print"),
 | |
|     dimensions: bool = Opt(False, "--dimensions", "-DIM", help="Show dimensions"),
 | |
|     parameters: bool = Opt(False, "--parameters", "-PAR", help="Show parameters"),
 | |
|     gradients: bool = Opt(False, "--gradients", "-GRAD", help="Show gradients"),
 | |
|     attributes: bool = Opt(False, "--attributes", "-ATTR", help="Show attributes"),
 | |
|     P0: bool = Opt(False, "--print-step0", "-P0", help="Print model before training"),
 | |
|     P1: bool = Opt(False, "--print-step1", "-P1", help="Print model after initialization"),
 | |
|     P2: bool = Opt(False, "--print-step2", "-P2", help="Print model after training"),
 | |
|     P3: bool = Opt(False, "--print-step3", "-P3", help="Print final predictions"),
 | |
|     use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU")
 | |
|     # fmt: on
 | |
| ):
 | |
|     """
 | |
|     Analyze a Thinc model implementation. Includes checks for internal structure
 | |
|     and activations during training.
 | |
| 
 | |
|     DOCS: https://nightly.spacy.io/api/cli#debug-model
 | |
|     """
 | |
|     setup_gpu(use_gpu)
 | |
|     layers = string_to_list(layers, intify=True)
 | |
|     print_settings = {
 | |
|         "dimensions": dimensions,
 | |
|         "parameters": parameters,
 | |
|         "gradients": gradients,
 | |
|         "attributes": attributes,
 | |
|         "layers": layers,
 | |
|         "print_before_training": P0,
 | |
|         "print_after_init": P1,
 | |
|         "print_after_training": P2,
 | |
|         "print_prediction": P3,
 | |
|     }
 | |
|     config_overrides = parse_config_overrides(ctx.args)
 | |
|     with show_validation_error(config_path):
 | |
|         raw_config = util.load_config(
 | |
|             config_path, overrides=config_overrides, interpolate=False
 | |
|         )
 | |
|     config = raw_config.interpolate()
 | |
|     allocator = config["training"]["gpu_allocator"]
 | |
|     if use_gpu >= 0 and allocator:
 | |
|         set_gpu_allocator(allocator)
 | |
|     with show_validation_error(config_path):
 | |
|         nlp = util.load_model_from_config(raw_config)
 | |
|         config = nlp.config.interpolate()
 | |
|         T = registry.resolve(config["training"], schema=ConfigSchemaTraining)
 | |
|     seed = T["seed"]
 | |
|     if seed is not None:
 | |
|         msg.info(f"Fixing random seed: {seed}")
 | |
|         fix_random_seed(seed)
 | |
|     pipe = nlp.get_pipe(component)
 | |
|     if not hasattr(pipe, "model"):
 | |
|         msg.fail(
 | |
|             f"The component '{component}' does not specify an object that holds a Model.",
 | |
|             exits=1,
 | |
|         )
 | |
|     model = pipe.model
 | |
|     debug_model(config, T, nlp, model, print_settings=print_settings)
 | |
| 
 | |
| 
 | |
| def debug_model(
 | |
|     config,
 | |
|     resolved_train_config,
 | |
|     nlp,
 | |
|     model: Model,
 | |
|     *,
 | |
|     print_settings: Optional[Dict[str, Any]] = None,
 | |
| ):
 | |
|     if not isinstance(model, Model):
 | |
|         msg.fail(
 | |
|             f"Requires a Thinc Model to be analysed, but found {type(model)} instead.",
 | |
|             exits=1,
 | |
|         )
 | |
|     if print_settings is None:
 | |
|         print_settings = {}
 | |
| 
 | |
|     # STEP 0: Printing before training
 | |
|     msg.info(f"Analysing model with ID {model.id}")
 | |
|     if print_settings.get("print_before_training"):
 | |
|         msg.divider(f"STEP 0 - before training")
 | |
|         _print_model(model, print_settings)
 | |
| 
 | |
|     # STEP 1: Initializing the model and printing again
 | |
|     X = _get_docs()
 | |
|     # The output vector might differ from the official type of the output layer
 | |
|     with data_validation(False):
 | |
|         try:
 | |
|             dot_names = [resolved_train_config["train_corpus"]]
 | |
|             with show_validation_error():
 | |
|                 (train_corpus,) = resolve_dot_names(config, dot_names)
 | |
|                 nlp.initialize(lambda: train_corpus(nlp))
 | |
|             msg.info("Initialized the model with the training corpus.")
 | |
|         except ValueError:
 | |
|             try:
 | |
|                 _set_output_dim(nO=7, model=model)
 | |
|                 with show_validation_error():
 | |
|                     nlp.initialize(lambda: [Example.from_dict(x, {}) for x in X])
 | |
|                 msg.info("Initialized the model with dummy data.")
 | |
|             except Exception:
 | |
|                 msg.fail(
 | |
|                     "Could not initialize the model: you'll have to provide a valid train_corpus argument in the config file.",
 | |
|                     exits=1,
 | |
|                 )
 | |
| 
 | |
|     if print_settings.get("print_after_init"):
 | |
|         msg.divider(f"STEP 1 - after initialization")
 | |
|         _print_model(model, print_settings)
 | |
| 
 | |
|     # STEP 2: Updating the model and printing again
 | |
|     optimizer = Adam(0.001)
 | |
|     set_dropout_rate(model, 0.2)
 | |
|     # ugly hack to deal with Tok2Vec listeners
 | |
|     tok2vec = None
 | |
|     if model.has_ref("tok2vec") and model.get_ref("tok2vec").name == "tok2vec-listener":
 | |
|         tok2vec = nlp.get_pipe("tok2vec")
 | |
|     goldY = None
 | |
|     for e in range(3):
 | |
|         if tok2vec:
 | |
|             tok2vec.update([Example.from_dict(x, {}) for x in X])
 | |
|         Y, get_dX = model.begin_update(X)
 | |
|         if goldY is None:
 | |
|             goldY = _simulate_gold(Y)
 | |
|         dY = get_gradient(goldY, Y, model.ops)
 | |
|         get_dX(dY)
 | |
|         model.finish_update(optimizer)
 | |
|     if print_settings.get("print_after_training"):
 | |
|         msg.divider(f"STEP 2 - after training")
 | |
|         _print_model(model, print_settings)
 | |
| 
 | |
|     # STEP 3: the final prediction
 | |
|     prediction = model.predict(X)
 | |
|     if print_settings.get("print_prediction"):
 | |
|         msg.divider(f"STEP 3 - prediction")
 | |
|         msg.info(str(prediction))
 | |
| 
 | |
|     msg.good(f"Succesfully ended analysis - model looks good.")
 | |
| 
 | |
| 
 | |
| def get_gradient(goldY, Y, ops):
 | |
|     return ops.asarray(Y) - ops.asarray(goldY)
 | |
| 
 | |
| 
 | |
| def _simulate_gold(element, counter=1):
 | |
|     if isinstance(element, Iterable):
 | |
|         for i in range(len(element)):
 | |
|             element[i] = _simulate_gold(element[i], counter + i)
 | |
|         return element
 | |
|     else:
 | |
|         return 1 / counter
 | |
| 
 | |
| 
 | |
| def _sentences():
 | |
|     return [
 | |
|         "Apple is looking at buying U.K. startup for $1 billion",
 | |
|         "Autonomous cars shift insurance liability toward manufacturers",
 | |
|         "San Francisco considers banning sidewalk delivery robots",
 | |
|         "London is a big city in the United Kingdom.",
 | |
|     ]
 | |
| 
 | |
| 
 | |
| def _get_docs(lang: str = "en"):
 | |
|     nlp = util.get_lang_class(lang)()
 | |
|     return list(nlp.pipe(_sentences()))
 | |
| 
 | |
| 
 | |
| def _set_output_dim(model, nO):
 | |
|     # simulating dim inference by directly setting the nO argument of the model
 | |
|     if model.has_dim("nO") is None:
 | |
|         model.set_dim("nO", nO)
 | |
|     if model.has_ref("output_layer"):
 | |
|         if model.get_ref("output_layer").has_dim("nO") is None:
 | |
|             model.get_ref("output_layer").set_dim("nO", nO)
 | |
| 
 | |
| 
 | |
| def _print_model(model, print_settings):
 | |
|     layers = print_settings.get("layers", "")
 | |
|     parameters = print_settings.get("parameters", False)
 | |
|     dimensions = print_settings.get("dimensions", False)
 | |
|     gradients = print_settings.get("gradients", False)
 | |
|     attributes = print_settings.get("attributes", False)
 | |
| 
 | |
|     for i, node in enumerate(model.walk()):
 | |
|         if not layers or i in layers:
 | |
|             msg.info(f"Layer {i}: model ID {node.id}: '{node.name}'")
 | |
| 
 | |
|             if dimensions:
 | |
|                 for name in node.dim_names:
 | |
|                     if node.has_dim(name):
 | |
|                         msg.info(f" - dim {name}: {node.get_dim(name)}")
 | |
|                     else:
 | |
|                         msg.info(f" - dim {name}: {node.has_dim(name)}")
 | |
| 
 | |
|             if parameters:
 | |
|                 for name in node.param_names:
 | |
|                     if node.has_param(name):
 | |
|                         print_value = _print_matrix(node.get_param(name))
 | |
|                         msg.info(f" - param {name}: {print_value}")
 | |
|                     else:
 | |
|                         msg.info(f" - param {name}: {node.has_param(name)}")
 | |
|             if gradients:
 | |
|                 for name in node.param_names:
 | |
|                     if node.has_grad(name):
 | |
|                         print_value = _print_matrix(node.get_grad(name))
 | |
|                         msg.info(f" - grad {name}: {print_value}")
 | |
|                     else:
 | |
|                         msg.info(f" - grad {name}: {node.has_grad(name)}")
 | |
|             if attributes:
 | |
|                 attrs = node.attrs
 | |
|                 for name, value in attrs.items():
 | |
|                     msg.info(f" - attr {name}: {value}")
 | |
| 
 | |
| 
 | |
| def _print_matrix(value):
 | |
|     if value is None or isinstance(value, bool):
 | |
|         return value
 | |
|     result = str(value.shape) + " - sample: "
 | |
|     sample_matrix = value
 | |
|     for d in range(value.ndim - 1):
 | |
|         sample_matrix = sample_matrix[0]
 | |
|     sample_matrix = sample_matrix[0:5]
 | |
|     result = result + str(sample_matrix)
 | |
|     return result
 |