mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 10:16:27 +03:00
114 lines
3.7 KiB
Cython
114 lines
3.7 KiB
Cython
from __future__ import unicode_literals
|
|
from __future__ import division
|
|
|
|
from os import path
|
|
import os
|
|
import shutil
|
|
import random
|
|
import json
|
|
import cython
|
|
|
|
from thinc.features cimport Feature, count_feats
|
|
|
|
|
|
cdef int arg_max(const weight_t* scores, const int n_classes) nogil:
|
|
cdef int i
|
|
cdef int best = 0
|
|
cdef weight_t mode = scores[0]
|
|
for i in range(1, n_classes):
|
|
if scores[i] > mode:
|
|
mode = scores[i]
|
|
best = i
|
|
return best
|
|
|
|
|
|
cdef class Model:
|
|
def __init__(self, n_classes, templates, model_loc=None):
|
|
if model_loc is not None and path.isdir(model_loc):
|
|
model_loc = path.join(model_loc, 'model')
|
|
self.n_classes = n_classes
|
|
self._extractor = Extractor(templates)
|
|
self._model = LinearModel(n_classes, self._extractor.n_templ)
|
|
self.model_loc = model_loc
|
|
if self.model_loc and path.exists(self.model_loc):
|
|
self._model.load(self.model_loc, freq_thresh=0)
|
|
|
|
cdef int update(self, atom_t* context, class_t guess, class_t gold, int cost) except -1:
|
|
cdef int n_feats
|
|
if cost == 0:
|
|
self._model.update({})
|
|
else:
|
|
feats = self._extractor.get_feats(context, &n_feats)
|
|
counts = {gold: {}, guess: {}}
|
|
count_feats(counts[gold], feats, n_feats, cost)
|
|
count_feats(counts[guess], feats, n_feats, -cost)
|
|
self._model.update(counts)
|
|
|
|
def end_training(self):
|
|
self._model.end_training()
|
|
self._model.dump(self.model_loc, freq_thresh=0)
|
|
|
|
|
|
cdef class HastyModel:
|
|
def __init__(self, n_classes, hasty_templates, full_templates, model_dir):
|
|
full_templates = tuple([t for t in full_templates if t not in hasty_templates])
|
|
self.mem = Pool()
|
|
self.n_classes = n_classes
|
|
self._scores = <weight_t*>self.mem.alloc(self.n_classes, sizeof(weight_t))
|
|
assert path.exists(model_dir)
|
|
assert path.isdir(model_dir)
|
|
self._hasty = Model(n_classes, hasty_templates, path.join(model_dir, 'hasty_model'))
|
|
self._full = Model(n_classes, full_templates, path.join(model_dir, 'full_model'))
|
|
self.hasty_cnt = 0
|
|
self.full_cnt = 0
|
|
|
|
cdef const weight_t* score(self, atom_t* context) except NULL:
|
|
cdef int i
|
|
hasty_scores = self._hasty.score(context)
|
|
if will_use_hasty(hasty_scores, self._hasty.n_classes):
|
|
self.hasty_cnt += 1
|
|
return hasty_scores
|
|
else:
|
|
self.full_cnt += 1
|
|
full_scores = self._full.score(context)
|
|
for i in range(self.n_classes):
|
|
self._scores[i] = full_scores[i] + hasty_scores[i]
|
|
return self._scores
|
|
|
|
cdef int update(self, atom_t* context, class_t guess, class_t gold, int cost) except -1:
|
|
self._hasty.update(context, guess, gold, cost)
|
|
self._full.update(context, guess, gold, cost)
|
|
|
|
def end_training(self):
|
|
self._hasty.end_training()
|
|
self._full.end_training()
|
|
|
|
|
|
@cython.cdivision(True)
|
|
cdef bint will_use_hasty(const weight_t* scores, int n_classes) nogil:
|
|
cdef:
|
|
weight_t best_score, second_score
|
|
int best, second
|
|
|
|
if scores[0] >= scores[1]:
|
|
best = 0
|
|
best_score = scores[0]
|
|
second = 1
|
|
second_score = scores[1]
|
|
else:
|
|
best = 1
|
|
best_score = scores[1]
|
|
second = 0
|
|
second_score = scores[0]
|
|
cdef int i
|
|
for i in range(2, n_classes):
|
|
if scores[i] > best_score:
|
|
second_score = best_score
|
|
second = best
|
|
best = i
|
|
best_score = scores[i]
|
|
elif scores[i] > second_score:
|
|
second_score = scores[i]
|
|
second = i
|
|
return best_score > 0 and second_score < (best_score / 2)
|