spaCy/spacy/lang/fr/__init__.py
Daniël de Kok e2b70df012
Configure isort to use the Black profile, recursively isort the spacy module ()
* Use isort with Black profile

* isort all the things

* Fix import cycles as a result of import sorting

* Add DOCBIN_ALL_ATTRS type definition

* Add isort to requirements

* Remove isort from build dependencies check

* Typo
2023-06-14 17:48:41 +02:00

55 lines
1.3 KiB
Python

from typing import Callable, Optional
from thinc.api import Model
from ...language import BaseDefaults, Language
from .lemmatizer import FrenchLemmatizer
from .lex_attrs import LEX_ATTRS
from .punctuation import TOKENIZER_INFIXES, TOKENIZER_PREFIXES, TOKENIZER_SUFFIXES
from .stop_words import STOP_WORDS
from .syntax_iterators import SYNTAX_ITERATORS
from .tokenizer_exceptions import TOKEN_MATCH, TOKENIZER_EXCEPTIONS
class FrenchDefaults(BaseDefaults):
tokenizer_exceptions = TOKENIZER_EXCEPTIONS
prefixes = TOKENIZER_PREFIXES
infixes = TOKENIZER_INFIXES
suffixes = TOKENIZER_SUFFIXES
token_match = TOKEN_MATCH
lex_attr_getters = LEX_ATTRS
syntax_iterators = SYNTAX_ITERATORS
stop_words = STOP_WORDS
class French(Language):
lang = "fr"
Defaults = FrenchDefaults
@French.factory(
"lemmatizer",
assigns=["token.lemma"],
default_config={
"model": None,
"mode": "rule",
"overwrite": False,
"scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"},
},
default_score_weights={"lemma_acc": 1.0},
)
def make_lemmatizer(
nlp: Language,
model: Optional[Model],
name: str,
mode: str,
overwrite: bool,
scorer: Optional[Callable],
):
return FrenchLemmatizer(
nlp.vocab, model, name, mode=mode, overwrite=overwrite, scorer=scorer
)
__all__ = ["French"]