mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-10 09:16:31 +03:00
6ae7618418
* Clean up Vocab constructor * Change effective type of `strings` from `Iterable[str]` to `Optional[StringStore]` * Don't automatically add strings to vocab * Change default values to `None` * Remove `**deprecated_kwargs` * Format
201 lines
7.0 KiB
Python
201 lines
7.0 KiB
Python
import pickle
|
|
|
|
import pytest
|
|
from thinc.api import get_current_ops
|
|
|
|
import spacy
|
|
from spacy.lang.en import English
|
|
from spacy.strings import StringStore
|
|
from spacy.tokens import Doc
|
|
from spacy.util import ensure_path, load_model
|
|
from spacy.vectors import Vectors
|
|
from spacy.vocab import Vocab
|
|
|
|
from ..util import make_tempdir
|
|
|
|
test_strings = [
|
|
(StringStore(), StringStore()),
|
|
(StringStore(["rats", "are", "cute"]), StringStore(["i", "like", "rats"])),
|
|
]
|
|
test_strings_attrs = [(StringStore(["rats", "are", "cute"]), "Hello")]
|
|
|
|
|
|
@pytest.mark.issue(599)
|
|
def test_issue599(en_vocab):
|
|
doc = Doc(en_vocab)
|
|
doc2 = Doc(doc.vocab)
|
|
doc2.from_bytes(doc.to_bytes())
|
|
assert doc2.has_annotation("DEP")
|
|
|
|
|
|
@pytest.mark.issue(4054)
|
|
def test_issue4054(en_vocab):
|
|
"""Test that a new blank model can be made with a vocab from file,
|
|
and that serialization does not drop the language at any point."""
|
|
nlp1 = English()
|
|
vocab1 = nlp1.vocab
|
|
with make_tempdir() as d:
|
|
vocab_dir = ensure_path(d / "vocab")
|
|
if not vocab_dir.exists():
|
|
vocab_dir.mkdir()
|
|
vocab1.to_disk(vocab_dir)
|
|
vocab2 = Vocab().from_disk(vocab_dir)
|
|
nlp2 = spacy.blank("en", vocab=vocab2)
|
|
nlp_dir = ensure_path(d / "nlp")
|
|
if not nlp_dir.exists():
|
|
nlp_dir.mkdir()
|
|
nlp2.to_disk(nlp_dir)
|
|
nlp3 = load_model(nlp_dir)
|
|
assert nlp3.lang == "en"
|
|
|
|
|
|
@pytest.mark.issue(4133)
|
|
def test_issue4133(en_vocab):
|
|
nlp = English()
|
|
vocab_bytes = nlp.vocab.to_bytes()
|
|
words = ["Apple", "is", "looking", "at", "buying", "a", "startup"]
|
|
pos = ["NOUN", "VERB", "ADP", "VERB", "PROPN", "NOUN", "ADP"]
|
|
doc = Doc(en_vocab, words=words)
|
|
for i, token in enumerate(doc):
|
|
token.pos_ = pos[i]
|
|
# usually this is already True when starting from proper models instead of blank English
|
|
doc_bytes = doc.to_bytes()
|
|
vocab = Vocab()
|
|
vocab = vocab.from_bytes(vocab_bytes)
|
|
doc = Doc(vocab).from_bytes(doc_bytes)
|
|
actual = []
|
|
for token in doc:
|
|
actual.append(token.pos_)
|
|
assert actual == pos
|
|
|
|
|
|
@pytest.mark.parametrize("text", ["rat"])
|
|
def test_serialize_vocab(en_vocab, text):
|
|
text_hash = en_vocab.strings.add(text)
|
|
vocab_bytes = en_vocab.to_bytes(exclude=["lookups"])
|
|
new_vocab = Vocab().from_bytes(vocab_bytes)
|
|
assert new_vocab.strings[text_hash] == text
|
|
assert new_vocab.to_bytes(exclude=["lookups"]) == vocab_bytes
|
|
|
|
|
|
@pytest.mark.parametrize("strings1,strings2", test_strings)
|
|
def test_serialize_vocab_roundtrip_bytes(strings1, strings2):
|
|
vocab1 = Vocab(strings=strings1)
|
|
vocab2 = Vocab(strings=strings2)
|
|
vocab1_b = vocab1.to_bytes()
|
|
vocab2_b = vocab2.to_bytes()
|
|
if strings1.to_bytes() == strings2.to_bytes():
|
|
assert vocab1_b == vocab2_b
|
|
else:
|
|
assert vocab1_b != vocab2_b
|
|
vocab1 = vocab1.from_bytes(vocab1_b)
|
|
assert vocab1.to_bytes() == vocab1_b
|
|
new_vocab1 = Vocab().from_bytes(vocab1_b)
|
|
assert new_vocab1.to_bytes() == vocab1_b
|
|
assert len(new_vocab1.strings) == len(strings1)
|
|
assert sorted([s for s in new_vocab1.strings]) == sorted(strings1)
|
|
|
|
|
|
@pytest.mark.parametrize("strings1,strings2", test_strings)
|
|
def test_serialize_vocab_roundtrip_disk(strings1, strings2):
|
|
vocab1 = Vocab(strings=strings1)
|
|
vocab2 = Vocab(strings=strings2)
|
|
with make_tempdir() as d:
|
|
file_path1 = d / "vocab1"
|
|
file_path2 = d / "vocab2"
|
|
vocab1.to_disk(file_path1)
|
|
vocab2.to_disk(file_path2)
|
|
vocab1_d = Vocab().from_disk(file_path1)
|
|
vocab2_d = Vocab().from_disk(file_path2)
|
|
# check strings rather than lexemes, which are only reloaded on demand
|
|
assert set(strings1) == set([s for s in vocab1_d.strings])
|
|
assert set(strings2) == set([s for s in vocab2_d.strings])
|
|
if set(strings1) == set(strings2):
|
|
assert [s for s in vocab1_d.strings] == [s for s in vocab2_d.strings]
|
|
else:
|
|
assert [s for s in vocab1_d.strings] != [s for s in vocab2_d.strings]
|
|
|
|
|
|
@pytest.mark.parametrize("strings,lex_attr", test_strings_attrs)
|
|
def test_serialize_vocab_lex_attrs_bytes(strings, lex_attr):
|
|
vocab1 = Vocab(strings=strings)
|
|
vocab2 = Vocab()
|
|
s = next(iter(vocab1.strings))
|
|
vocab1[s].norm_ = lex_attr
|
|
assert vocab1[s].norm_ == lex_attr
|
|
assert vocab2[s].norm_ != lex_attr
|
|
vocab2 = vocab2.from_bytes(vocab1.to_bytes())
|
|
assert vocab2[s].norm_ == lex_attr
|
|
|
|
|
|
@pytest.mark.parametrize("strings,lex_attr", test_strings_attrs)
|
|
def test_deserialize_vocab_seen_entries(strings, lex_attr):
|
|
# Reported in #2153
|
|
vocab = Vocab(strings=strings)
|
|
vocab.from_bytes(vocab.to_bytes())
|
|
assert len(vocab.strings) == len(strings)
|
|
|
|
|
|
@pytest.mark.parametrize("strings,lex_attr", test_strings_attrs)
|
|
def test_serialize_vocab_lex_attrs_disk(strings, lex_attr):
|
|
vocab1 = Vocab(strings=strings)
|
|
vocab2 = Vocab()
|
|
s = next(iter(vocab1.strings))
|
|
vocab1[s].norm_ = lex_attr
|
|
assert vocab1[s].norm_ == lex_attr
|
|
assert vocab2[s].norm_ != lex_attr
|
|
with make_tempdir() as d:
|
|
file_path = d / "vocab"
|
|
vocab1.to_disk(file_path)
|
|
vocab2 = vocab2.from_disk(file_path)
|
|
assert vocab2[s].norm_ == lex_attr
|
|
|
|
|
|
@pytest.mark.parametrize("strings1,strings2", test_strings)
|
|
def test_serialize_stringstore_roundtrip_bytes(strings1, strings2):
|
|
sstore1 = StringStore(strings=strings1)
|
|
sstore2 = StringStore(strings=strings2)
|
|
sstore1_b = sstore1.to_bytes()
|
|
sstore2_b = sstore2.to_bytes()
|
|
if set(strings1) == set(strings2):
|
|
assert sstore1_b == sstore2_b
|
|
else:
|
|
assert sstore1_b != sstore2_b
|
|
sstore1 = sstore1.from_bytes(sstore1_b)
|
|
assert sstore1.to_bytes() == sstore1_b
|
|
new_sstore1 = StringStore().from_bytes(sstore1_b)
|
|
assert new_sstore1.to_bytes() == sstore1_b
|
|
assert set(new_sstore1) == set(strings1)
|
|
|
|
|
|
@pytest.mark.parametrize("strings1,strings2", test_strings)
|
|
def test_serialize_stringstore_roundtrip_disk(strings1, strings2):
|
|
sstore1 = StringStore(strings=strings1)
|
|
sstore2 = StringStore(strings=strings2)
|
|
with make_tempdir() as d:
|
|
file_path1 = d / "strings1"
|
|
file_path2 = d / "strings2"
|
|
sstore1.to_disk(file_path1)
|
|
sstore2.to_disk(file_path2)
|
|
sstore1_d = StringStore().from_disk(file_path1)
|
|
sstore2_d = StringStore().from_disk(file_path2)
|
|
assert set(sstore1_d) == set(sstore1)
|
|
assert set(sstore2_d) == set(sstore2)
|
|
if set(strings1) == set(strings2):
|
|
assert set(sstore1_d) == set(sstore2_d)
|
|
else:
|
|
assert set(sstore1_d) != set(sstore2_d)
|
|
|
|
|
|
@pytest.mark.parametrize("strings,lex_attr", test_strings_attrs)
|
|
def test_pickle_vocab(strings, lex_attr):
|
|
vocab = Vocab(strings=strings)
|
|
ops = get_current_ops()
|
|
vectors = Vectors(data=ops.xp.zeros((10, 10)), mode="floret", hash_count=1)
|
|
vocab.vectors = vectors
|
|
vocab[strings[0]].norm_ = lex_attr
|
|
vocab_pickled = pickle.dumps(vocab)
|
|
vocab_unpickled = pickle.loads(vocab_pickled)
|
|
assert vocab.to_bytes() == vocab_unpickled.to_bytes()
|
|
assert vocab_unpickled.vectors.mode == "floret"
|