mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-21 06:44:37 +03:00
136 lines
5.4 KiB
Plaintext
136 lines
5.4 KiB
Plaintext
include ../../_includes/_mixins
|
|
|
|
p
|
|
| This workflow describes how to train new statistical models for spaCy's
|
|
| part-of-speech tagger, named entity recognizer and dependency parser.
|
|
| Once the model is trained, you can then
|
|
| #[+a("/docs/usage/saving-loading") save and load] it.
|
|
|
|
+h(2, "train-pos-tagger") Training the part-of-speech tagger
|
|
|
|
+code.
|
|
from spacy.vocab import Vocab
|
|
from spacy.tagger import Tagger
|
|
from spacy.tokens import Doc
|
|
from spacy.gold import GoldParse
|
|
|
|
|
|
vocab = Vocab(tag_map={'N': {'pos': 'NOUN'}, 'V': {'pos': 'VERB'}})
|
|
tagger = Tagger(vocab)
|
|
|
|
doc = Doc(vocab, words=['I', 'like', 'stuff'])
|
|
gold = GoldParse(doc, tags=['N', 'V', 'N'])
|
|
tagger.update(doc, gold)
|
|
|
|
tagger.model.end_training()
|
|
|
|
p
|
|
+button(gh("spaCy", "examples/training/train_tagger.py"), false, "secondary") Full example
|
|
|
|
+h(2, "train-entity") Training the named entity recognizer
|
|
|
|
+code.
|
|
from spacy.vocab import Vocab
|
|
from spacy.pipeline import EntityRecognizer
|
|
from spacy.tokens import Doc
|
|
|
|
vocab = Vocab()
|
|
entity = EntityRecognizer(vocab, entity_types=['PERSON', 'LOC'])
|
|
|
|
doc = Doc(vocab, words=['Who', 'is', 'Shaka', 'Khan', '?'])
|
|
entity.update(doc, ['O', 'O', 'B-PERSON', 'L-PERSON', 'O'])
|
|
|
|
entity.model.end_training()
|
|
|
|
p
|
|
+button(gh("spaCy", "examples/training/train_ner.py"), false, "secondary") Full example
|
|
|
|
+h(2, "extend-entity") Extending the named entity recognizer
|
|
|
|
p
|
|
| All #[+a("/docs/usage/models") spaCy models] support online learning, so
|
|
| you can update a pre-trained model with new examples. You can even add
|
|
| new classes to an existing model, to recognise a new entity type,
|
|
| part-of-speech, or syntactic relation. Updating an existing model is
|
|
| particularly useful as a "quick and dirty solution", if you have only a
|
|
| few corrections or annotations.
|
|
|
|
p.o-inline-list
|
|
+button(gh("spaCy", "examples/training/train_new_entity_type.py"), true, "secondary") Full example
|
|
+button("/docs/usage/training-ner", false, "secondary") Usage Workflow
|
|
|
|
+h(2, "train-dependency") Training the dependency parser
|
|
|
|
+code.
|
|
from spacy.vocab import Vocab
|
|
from spacy.pipeline import DependencyParser
|
|
from spacy.tokens import Doc
|
|
|
|
vocab = Vocab()
|
|
parser = DependencyParser(vocab, labels=['nsubj', 'compound', 'dobj', 'punct'])
|
|
|
|
doc = Doc(vocab, words=['Who', 'is', 'Shaka', 'Khan', '?'])
|
|
parser.update(doc, [(1, 'nsubj'), (1, 'ROOT'), (3, 'compound'), (1, 'dobj'),
|
|
(1, 'punct')])
|
|
|
|
parser.model.end_training()
|
|
|
|
p
|
|
+button(gh("spaCy", "examples/training/train_parser.py"), false, "secondary") Full example
|
|
|
|
+h(2, "feature-templates") Customizing the feature extraction
|
|
|
|
p
|
|
| spaCy currently uses linear models for the tagger, parser and entity
|
|
| recognizer, with weights learned using the
|
|
| #[+a("https://explosion.ai/blog/part-of-speech-pos-tagger-in-python") Averaged Perceptron algorithm].
|
|
|
|
+aside("Linear Model Feature Scheme")
|
|
| For a list of the available feature atoms, see the #[+a("/docs/api/features") Linear Model Feature Scheme].
|
|
|
|
p
|
|
| Because it's a linear model, it's important for accuracy to build
|
|
| conjunction features out of the atomic predictors. Let's say you have
|
|
| two atomic predictors asking, "What is the part-of-speech of the
|
|
| previous token?", and "What is the part-of-speech of the previous
|
|
| previous token?". These predictors will introduce a number of features,
|
|
| e.g. #[code Prev-pos=NN], #[code Prev-pos=VBZ], etc. A conjunction
|
|
| template introduces features such as #[code Prev-pos=NN&Prev-pos=VBZ].
|
|
|
|
p
|
|
| The feature extraction proceeds in two passes. In the first pass, we
|
|
| fill an array with the values of all of the atomic predictors. In the
|
|
| second pass, we iterate over the feature templates, and fill a small
|
|
| temporary array with the predictors that will be combined into a
|
|
| conjunction feature. Finally, we hash this array into a 64-bit integer,
|
|
| using the MurmurHash algorithm. You can see this at work in the
|
|
| #[+a(gh("thinc", "thinc/linear/features.pyx", "94dbe06fd3c8f24d86ab0f5c7984e52dbfcdc6cb")) #[code thinc.linear.features]] module.
|
|
|
|
p
|
|
| It's very easy to change the feature templates, to create novel
|
|
| combinations of the existing atomic predictors. There's currently no API
|
|
| available to add new atomic predictors, though. You'll have to create a
|
|
| subclass of the model, and write your own #[code set_featuresC] method.
|
|
|
|
p
|
|
| The feature templates are passed in using the #[code features] keyword
|
|
| argument to the constructors of the #[+api("tagger") #[code Tagger]],
|
|
| #[+api("dependencyparser") #[code DependencyParser]] and
|
|
| #[+api("entityrecognizer") #[code EntityRecognizer]]:
|
|
|
|
+code.
|
|
from spacy.vocab import Vocab
|
|
from spacy.pipeline import Tagger
|
|
from spacy.tagger import P2_orth, P1_orth
|
|
from spacy.tagger import P2_cluster, P1_cluster, W_orth, N1_orth, N2_orth
|
|
|
|
vocab = Vocab(tag_map={'N': {'pos': 'NOUN'}, 'V': {'pos': 'VERB'}})
|
|
tagger = Tagger(vocab, features=[(P2_orth, P2_cluster), (P1_orth, P1_cluster),
|
|
(P2_orth,), (P1_orth,), (W_orth,),
|
|
(N1_orth,), (N2_orth,)])
|
|
|
|
p
|
|
| Custom feature templates can be passed to the #[code DependencyParser]
|
|
| and #[code EntityRecognizer] as well, also using the #[code features]
|
|
| keyword argument of the constructor.
|