spaCy/spacy/cli/profile.py
Ines Montani 43b960c01b
Refactor pipeline components, config and language data (#5759)
* Update with WIP

* Update with WIP

* Update with pipeline serialization

* Update types and pipe factories

* Add deep merge, tidy up and add tests

* Fix pipe creation from config

* Don't validate default configs on load

* Update spacy/language.py

Co-authored-by: Ines Montani <ines@ines.io>

* Adjust factory/component meta error

* Clean up factory args and remove defaults

* Add test for failing empty dict defaults

* Update pipeline handling and methods

* provide KB as registry function instead of as object

* small change in test to make functionality more clear

* update example script for EL configuration

* Fix typo

* Simplify test

* Simplify test

* splitting pipes.pyx into separate files

* moving default configs to each component file

* fix batch_size type

* removing default values from component constructors where possible (TODO: test 4725)

* skip instead of xfail

* Add test for config -> nlp with multiple instances

* pipeline.pipes -> pipeline.pipe

* Tidy up, document, remove kwargs

* small cleanup/generalization for Tok2VecListener

* use DEFAULT_UPSTREAM field

* revert to avoid circular imports

* Fix tests

* Replace deprecated arg

* Make model dirs require config

* fix pickling of keyword-only arguments in constructor

* WIP: clean up and integrate full config

* Add helper to handle function args more reliably

Now also includes keyword-only args

* Fix config composition and serialization

* Improve config debugging and add visual diff

* Remove unused defaults and fix type

* Remove pipeline and factories from meta

* Update spacy/default_config.cfg

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Update spacy/default_config.cfg

* small UX edits

* avoid printing stack trace for debug CLI commands

* Add support for language-specific factories

* specify the section of the config which holds the model to debug

* WIP: add Language.from_config

* Update with language data refactor WIP

* Auto-format

* Add backwards-compat handling for Language.factories

* Update morphologizer.pyx

* Fix morphologizer

* Update and simplify lemmatizers

* Fix Japanese tests

* Port over tagger changes

* Fix Chinese and tests

* Update to latest Thinc

* WIP: xfail first Russian lemmatizer test

* Fix component-specific overrides

* fix nO for output layers in debug_model

* Fix default value

* Fix tests and don't pass objects in config

* Fix deep merging

* Fix lemma lookup data registry

Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed)

* Add types

* Add Vocab.from_config

* Fix typo

* Fix tests

* Make config copying more elegant

* Fix pipe analysis

* Fix lemmatizers and is_base_form

* WIP: move language defaults to config

* Fix morphology type

* Fix vocab

* Remove comment

* Update to latest Thinc

* Add morph rules to config

* Tidy up

* Remove set_morphology option from tagger factory

* Hack use_gpu

* Move [pipeline] to top-level block and make [nlp.pipeline] list

Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them

* Fix use_gpu and resume in CLI

* Auto-format

* Remove resume from config

* Fix formatting and error

* [pipeline] -> [components]

* Fix types

* Fix tagger test: requires set_morphology?

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 13:42:59 +02:00

93 lines
3.3 KiB
Python

from typing import Optional, Sequence, Union, Iterator
import tqdm
from pathlib import Path
import srsly
import cProfile
import pstats
import sys
import itertools
from wasabi import msg, Printer
import typer
from ._util import app, debug_cli, Arg, Opt, NAME
from ..language import Language
from ..util import load_model
@debug_cli.command("profile")
@app.command("profile", hidden=True)
def profile_cli(
# fmt: off
ctx: typer.Context, # This is only used to read current calling context
model: str = Arg(..., help="Model to load"),
inputs: Optional[Path] = Arg(None, help="Location of input file. '-' for stdin.", exists=True, allow_dash=True),
n_texts: int = Opt(10000, "--n-texts", "-n", help="Maximum number of texts to use if available"),
# fmt: on
):
"""
Profile which functions take the most time in a spaCy pipeline.
Input should be formatted as one JSON object per line with a key "text".
It can either be provided as a JSONL file, or be read from sys.sytdin.
If no input file is specified, the IMDB dataset is loaded via Thinc.
"""
if ctx.parent.command.name == NAME: # called as top-level command
msg.warn(
"The profile command is now available via the 'debug profile' "
"subcommand. You can run python -m spacy debug --help for an "
"overview of the other available debugging commands."
)
profile(model, inputs=inputs, n_texts=n_texts)
def profile(model: str, inputs: Optional[Path] = None, n_texts: int = 10000) -> None:
if inputs is not None:
inputs = _read_inputs(inputs, msg)
if inputs is None:
try:
import ml_datasets
except ImportError:
msg.fail(
"This command, when run without an input file, "
"requires the ml_datasets library to be installed: "
"pip install ml_datasets",
exits=1,
)
n_inputs = 25000
with msg.loading("Loading IMDB dataset via Thinc..."):
imdb_train, _ = ml_datasets.imdb()
inputs, _ = zip(*imdb_train)
msg.info(f"Loaded IMDB dataset and using {n_inputs} examples")
inputs = inputs[:n_inputs]
with msg.loading(f"Loading model '{model}'..."):
nlp = load_model(model)
msg.good(f"Loaded model '{model}'")
texts = list(itertools.islice(inputs, n_texts))
cProfile.runctx("parse_texts(nlp, texts)", globals(), locals(), "Profile.prof")
s = pstats.Stats("Profile.prof")
msg.divider("Profile stats")
s.strip_dirs().sort_stats("time").print_stats()
def parse_texts(nlp: Language, texts: Sequence[str]) -> None:
for doc in nlp.pipe(tqdm.tqdm(texts), batch_size=16):
pass
def _read_inputs(loc: Union[Path, str], msg: Printer) -> Iterator[str]:
if loc == "-":
msg.info("Reading input from sys.stdin")
file_ = sys.stdin
file_ = (line.encode("utf8") for line in file_)
else:
input_path = Path(loc)
if not input_path.exists() or not input_path.is_file():
msg.fail("Not a valid input data file", loc, exits=1)
msg.info(f"Using data from {input_path.parts[-1]}")
file_ = input_path.open()
for line in file_:
data = srsly.json_loads(line)
text = data["text"]
yield text