mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 07:27:28 +03:00 
			
		
		
		
	* Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
		
			
				
	
	
		
			80 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			80 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import pytest
 | |
| 
 | |
| from spacy import util
 | |
| from spacy.gold import Example
 | |
| from spacy.lang.en import English
 | |
| from spacy.language import Language
 | |
| from spacy.tests.util import make_tempdir
 | |
| from spacy.morphology import Morphology
 | |
| 
 | |
| 
 | |
| def test_label_types():
 | |
|     nlp = Language()
 | |
|     morphologizer = nlp.add_pipe("morphologizer")
 | |
|     morphologizer.add_label("Feat=A")
 | |
|     with pytest.raises(ValueError):
 | |
|         morphologizer.add_label(9)
 | |
| 
 | |
| 
 | |
| TRAIN_DATA = [
 | |
|     (
 | |
|         "I like green eggs",
 | |
|         {
 | |
|             "morphs": ["Feat=N", "Feat=V", "Feat=J", "Feat=N"],
 | |
|             "pos": ["NOUN", "VERB", "ADJ", "NOUN"],
 | |
|         },
 | |
|     ),
 | |
|     # test combinations of morph+POS
 | |
|     ("Eat blue ham", {"morphs": ["Feat=V", "", ""], "pos": ["", "ADJ", ""]},),
 | |
| ]
 | |
| 
 | |
| 
 | |
| def test_overfitting_IO():
 | |
|     # Simple test to try and quickly overfit the morphologizer - ensuring the ML models work correctly
 | |
|     nlp = English()
 | |
|     morphologizer = nlp.add_pipe("morphologizer")
 | |
|     train_examples = []
 | |
|     for inst in TRAIN_DATA:
 | |
|         train_examples.append(Example.from_dict(nlp.make_doc(inst[0]), inst[1]))
 | |
|         for morph, pos in zip(inst[1]["morphs"], inst[1]["pos"]):
 | |
|             if morph and pos:
 | |
|                 morphologizer.add_label(
 | |
|                     morph + Morphology.FEATURE_SEP + "POS" + Morphology.FIELD_SEP + pos
 | |
|                 )
 | |
|             elif pos:
 | |
|                 morphologizer.add_label("POS" + Morphology.FIELD_SEP + pos)
 | |
|             elif morph:
 | |
|                 morphologizer.add_label(morph)
 | |
|     optimizer = nlp.begin_training()
 | |
| 
 | |
|     for i in range(50):
 | |
|         losses = {}
 | |
|         nlp.update(train_examples, sgd=optimizer, losses=losses)
 | |
|     assert losses["morphologizer"] < 0.00001
 | |
| 
 | |
|     # test the trained model
 | |
|     test_text = "I like blue ham"
 | |
|     doc = nlp(test_text)
 | |
|     gold_morphs = [
 | |
|         "Feat=N",
 | |
|         "Feat=V",
 | |
|         "",
 | |
|         "",
 | |
|     ]
 | |
|     gold_pos_tags = [
 | |
|         "NOUN",
 | |
|         "VERB",
 | |
|         "ADJ",
 | |
|         "",
 | |
|     ]
 | |
|     assert [t.morph_ for t in doc] == gold_morphs
 | |
|     assert [t.pos_ for t in doc] == gold_pos_tags
 | |
| 
 | |
|     # Also test the results are still the same after IO
 | |
|     with make_tempdir() as tmp_dir:
 | |
|         nlp.to_disk(tmp_dir)
 | |
|         nlp2 = util.load_model_from_path(tmp_dir)
 | |
|         doc2 = nlp2(test_text)
 | |
|         assert [t.morph_ for t in doc2] == gold_morphs
 | |
|         assert [t.pos_ for t in doc2] == gold_pos_tags
 |