mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-26 05:31:15 +03:00 
			
		
		
		
	* Support registered vectors * Format * Auto-fill [nlp] on load from config and from bytes/disk * Only auto-fill [nlp] * Undo all changes to Language.from_disk * Expand BaseVectors These methods are needed in various places for training and vector similarity. * isort * More linting * Only fill [nlp.vectors] * Update spacy/vocab.pyx Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Revert changes to test related to auto-filling [nlp] * Add vectors registry * Rephrase error about vocab methods for vectors * Switch to dummy implementation for BaseVectors.to_ops * Add initial draft of docs * Remove example from BaseVectors docs * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update website/docs/api/basevectors.mdx Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Fix type and lint bpemb example * Update website/docs/api/basevectors.mdx --------- Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
		
			
				
	
	
		
			462 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			462 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| ---
 | ||
| title: Vectors
 | ||
| teaser: Store, save and load word vectors
 | ||
| tag: class
 | ||
| source: spacy/vectors.pyx
 | ||
| version: 2
 | ||
| ---
 | ||
| 
 | ||
| Vectors data is kept in the `Vectors.data` attribute, which should be an
 | ||
| instance of `numpy.ndarray` (for CPU vectors) or `cupy.ndarray` (for GPU
 | ||
| vectors).
 | ||
| 
 | ||
| As of spaCy v3.2, `Vectors` supports two types of vector tables:
 | ||
| 
 | ||
| - `default`: A standard vector table (as in spaCy v3.1 and earlier) where each
 | ||
|   key is mapped to one row in the vector table. Multiple keys can be mapped to
 | ||
|   the same vector, and not all of the rows in the table need to be assigned – so
 | ||
|   `vectors.n_keys` may be greater or smaller than `vectors.shape[0]`.
 | ||
| - `floret`: Only supports vectors trained with
 | ||
|   [floret](https://github.com/explosion/floret), an extended version of
 | ||
|   [fastText](https://fasttext.cc) that produces compact vector tables by
 | ||
|   combining fastText's subword ngrams with Bloom embeddings. The compact tables
 | ||
|   are similar to the [`HashEmbed`](https://thinc.ai/docs/api-layers#hashembed)
 | ||
|   embeddings already used in many spaCy components. Each word is represented as
 | ||
|   the sum of one or more rows as determined by the settings related to character
 | ||
|   ngrams and the hash table.
 | ||
| 
 | ||
| ## Vectors.\_\_init\_\_ {id="init",tag="method"}
 | ||
| 
 | ||
| Create a new vector store. With the default mode, you can set the vector values
 | ||
| and keys directly on initialization, or supply a `shape` keyword argument to
 | ||
| create an empty table you can add vectors to later. In floret mode, the complete
 | ||
| vector data and settings must be provided on initialization and cannot be
 | ||
| modified later.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > from spacy.vectors import Vectors
 | ||
| >
 | ||
| > empty_vectors = Vectors(shape=(10000, 300))
 | ||
| >
 | ||
| > data = numpy.zeros((3, 300), dtype='f')
 | ||
| > keys = ["cat", "dog", "rat"]
 | ||
| > vectors = Vectors(data=data, keys=keys)
 | ||
| > ```
 | ||
| 
 | ||
| | Name                                      | Description                                                                                                                                                                            |
 | ||
| | ----------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | ||
| | _keyword-only_                            |                                                                                                                                                                                        |
 | ||
| | `strings`                                 | The string store. A new string store is created if one is not provided. Defaults to `None`. ~~Optional[StringStore]~~                                                                  |
 | ||
| | `shape`                                   | Size of the table as `(n_entries, n_columns)`, the number of entries and number of columns. Not required if you're initializing the object with `data` and `keys`. ~~Tuple[int, int]~~ |
 | ||
| | `data`                                    | The vector data. ~~numpy.ndarray[ndim=2, dtype=float32]~~                                                                                                                              |
 | ||
| | `keys`                                    | A sequence of keys aligned with the data. ~~Iterable[Union[str, int]]~~                                                                                                                |
 | ||
| | `name`                                    | A name to identify the vectors table. ~~str~~                                                                                                                                          |
 | ||
| | `mode` <Tag variant="new">3.2</Tag>       | Vectors mode: `"default"` or [`"floret"`](https://github.com/explosion/floret) (default: `"default"`). ~~str~~                                                                         |
 | ||
| | `minn` <Tag variant="new">3.2</Tag>       | The floret char ngram minn (default: `0`). ~~int~~                                                                                                                                     |
 | ||
| | `maxn` <Tag variant="new">3.2</Tag>       | The floret char ngram maxn (default: `0`). ~~int~~                                                                                                                                     |
 | ||
| | `hash_count` <Tag variant="new">3.2</Tag> | The floret hash count. Supported values: 1--4 (default: `1`). ~~int~~                                                                                                                  |
 | ||
| | `hash_seed` <Tag variant="new">3.2</Tag>  | The floret hash seed (default: `0`). ~~int~~                                                                                                                                           |
 | ||
| | `bow` <Tag variant="new">3.2</Tag>        | The floret BOW string (default: `"<"`). ~~str~~                                                                                                                                        |
 | ||
| | `eow` <Tag variant="new">3.2</Tag>        | The floret EOW string (default: `">"`). ~~str~~                                                                                                                                        |
 | ||
| | `attr` <Tag variant="new">3.6</Tag>       | The token attribute for the vector keys (default: `"ORTH"`). ~~Union[int, str]~~                                                                                                       |
 | ||
| 
 | ||
| ## Vectors.\_\_getitem\_\_ {id="getitem",tag="method"}
 | ||
| 
 | ||
| Get a vector by key. If the key is not found in the table, a `KeyError` is
 | ||
| raised.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > cat_id = nlp.vocab.strings["cat"]
 | ||
| > cat_vector = nlp.vocab.vectors[cat_id]
 | ||
| > assert cat_vector == nlp.vocab["cat"].vector
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Description                                                      |
 | ||
| | ----------- | ---------------------------------------------------------------- |
 | ||
| | `key`       | The key to get the vector for. ~~Union[int, str]~~               |
 | ||
| | **RETURNS** | The vector for the key. ~~numpy.ndarray[ndim=1, dtype=float32]~~ |
 | ||
| 
 | ||
| ## Vectors.\_\_setitem\_\_ {id="setitem",tag="method"}
 | ||
| 
 | ||
| Set a vector for the given key. Not supported for `floret` mode.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > cat_id = nlp.vocab.strings["cat"]
 | ||
| > vector = numpy.random.uniform(-1, 1, (300,))
 | ||
| > nlp.vocab.vectors[cat_id] = vector
 | ||
| > ```
 | ||
| 
 | ||
| | Name     | Description                                                 |
 | ||
| | -------- | ----------------------------------------------------------- |
 | ||
| | `key`    | The key to set the vector for. ~~int~~                      |
 | ||
| | `vector` | The vector to set. ~~numpy.ndarray[ndim=1, dtype=float32]~~ |
 | ||
| 
 | ||
| ## Vectors.\_\_iter\_\_ {id="iter",tag="method"}
 | ||
| 
 | ||
| Iterate over the keys in the table. In `floret` mode, the keys table is not
 | ||
| used.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > for key in nlp.vocab.vectors:
 | ||
| >    print(key, nlp.vocab.strings[key])
 | ||
| > ```
 | ||
| 
 | ||
| | Name       | Description                 |
 | ||
| | ---------- | --------------------------- |
 | ||
| | **YIELDS** | A key in the table. ~~int~~ |
 | ||
| 
 | ||
| ## Vectors.\_\_len\_\_ {id="len",tag="method"}
 | ||
| 
 | ||
| Return the number of vectors in the table.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > vectors = Vectors(shape=(3, 300))
 | ||
| > assert len(vectors) == 3
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Description                                 |
 | ||
| | ----------- | ------------------------------------------- |
 | ||
| | **RETURNS** | The number of vectors in the table. ~~int~~ |
 | ||
| 
 | ||
| ## Vectors.\_\_contains\_\_ {id="contains",tag="method"}
 | ||
| 
 | ||
| Check whether a key has been mapped to a vector entry in the table. In `floret`
 | ||
| mode, returns `True` for all keys.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > cat_id = nlp.vocab.strings["cat"]
 | ||
| > nlp.vocab.vectors.add(cat_id, numpy.random.uniform(-1, 1, (300,)))
 | ||
| > assert cat_id in vectors
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Description                                  |
 | ||
| | ----------- | -------------------------------------------- |
 | ||
| | `key`       | The key to check. ~~int~~                    |
 | ||
| | **RETURNS** | Whether the key has a vector entry. ~~bool~~ |
 | ||
| 
 | ||
| ## Vectors.add {id="add",tag="method"}
 | ||
| 
 | ||
| Add a key to the table, optionally setting a vector value as well. Keys can be
 | ||
| mapped to an existing vector by setting `row`, or a new vector can be added. Not
 | ||
| supported for `floret` mode.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > vector = numpy.random.uniform(-1, 1, (300,))
 | ||
| > cat_id = nlp.vocab.strings["cat"]
 | ||
| > nlp.vocab.vectors.add(cat_id, vector=vector)
 | ||
| > nlp.vocab.vectors.add("dog", row=0)
 | ||
| > ```
 | ||
| 
 | ||
| | Name           | Description                                                                     |
 | ||
| | -------------- | ------------------------------------------------------------------------------- |
 | ||
| | `key`          | The key to add. ~~Union[str, int]~~                                             |
 | ||
| | _keyword-only_ |                                                                                 |
 | ||
| | `vector`       | An optional vector to add for the key. ~~numpy.ndarray[ndim=1, dtype=float32]~~ |
 | ||
| | `row`          | An optional row number of a vector to map the key to. ~~int~~                   |
 | ||
| | **RETURNS**    | The row the vector was added to. ~~int~~                                        |
 | ||
| 
 | ||
| ## Vectors.resize {id="resize",tag="method"}
 | ||
| 
 | ||
| Resize the underlying vectors array. If `inplace=True`, the memory is
 | ||
| reallocated. This may cause other references to the data to become invalid, so
 | ||
| only use `inplace=True` if you're sure that's what you want. If the number of
 | ||
| vectors is reduced, keys mapped to rows that have been deleted are removed.
 | ||
| These removed items are returned as a list of `(key, row)` tuples. Not supported
 | ||
| for `floret` mode.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > removed = nlp.vocab.vectors.resize((10000, 300))
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Description                                                                              |
 | ||
| | ----------- | ---------------------------------------------------------------------------------------- |
 | ||
| | `shape`     | A `(rows, dims)` tuple describing the number of rows and dimensions. ~~Tuple[int, int]~~ |
 | ||
| | `inplace`   | Reallocate the memory. ~~bool~~                                                          |
 | ||
| | **RETURNS** | The removed items as a list of `(key, row)` tuples. ~~List[Tuple[int, int]]~~            |
 | ||
| 
 | ||
| ## Vectors.keys {id="keys",tag="method"}
 | ||
| 
 | ||
| A sequence of the keys in the table. In `floret` mode, the keys table is not
 | ||
| used.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > for key in nlp.vocab.vectors.keys():
 | ||
| >     print(key, nlp.vocab.strings[key])
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Description                 |
 | ||
| | ----------- | --------------------------- |
 | ||
| | **RETURNS** | The keys. ~~Iterable[int]~~ |
 | ||
| 
 | ||
| ## Vectors.values {id="values",tag="method"}
 | ||
| 
 | ||
| Iterate over vectors that have been assigned to at least one key. Note that some
 | ||
| vectors may be unassigned, so the number of vectors returned may be less than
 | ||
| the length of the vectors table. In `floret` mode, the keys table is not used.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > for vector in nlp.vocab.vectors.values():
 | ||
| >     print(vector)
 | ||
| > ```
 | ||
| 
 | ||
| | Name       | Description                                                     |
 | ||
| | ---------- | --------------------------------------------------------------- |
 | ||
| | **YIELDS** | A vector in the table. ~~numpy.ndarray[ndim=1, dtype=float32]~~ |
 | ||
| 
 | ||
| ## Vectors.items {id="items",tag="method"}
 | ||
| 
 | ||
| Iterate over `(key, vector)` pairs, in order. In `floret` mode, the keys table
 | ||
| is empty.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > for key, vector in nlp.vocab.vectors.items():
 | ||
| >    print(key, nlp.vocab.strings[key], vector)
 | ||
| > ```
 | ||
| 
 | ||
| | Name       | Description                                                                           |
 | ||
| | ---------- | ------------------------------------------------------------------------------------- |
 | ||
| | **YIELDS** | `(key, vector)` pairs, in order. ~~Tuple[int, numpy.ndarray[ndim=1, dtype=float32]]~~ |
 | ||
| 
 | ||
| ## Vectors.find {id="find",tag="method"}
 | ||
| 
 | ||
| Look up one or more keys by row, or vice versa. Not supported for `floret` mode.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > row = nlp.vocab.vectors.find(key="cat")
 | ||
| > rows = nlp.vocab.vectors.find(keys=["cat", "dog"])
 | ||
| > key = nlp.vocab.vectors.find(row=256)
 | ||
| > keys = nlp.vocab.vectors.find(rows=[18, 256, 985])
 | ||
| > ```
 | ||
| 
 | ||
| | Name           | Description                                                                                  |
 | ||
| | -------------- | -------------------------------------------------------------------------------------------- |
 | ||
| | _keyword-only_ |                                                                                              |
 | ||
| | `key`          | Find the row that the given key points to. Returns int, `-1` if missing. ~~Union[str, int]~~ |
 | ||
| | `keys`         | Find rows that the keys point to. Returns `numpy.ndarray`. ~~Iterable[Union[str, int]]~~     |
 | ||
| | `row`          | Find the first key that points to the row. Returns integer. ~~int~~                          |
 | ||
| | `rows`         | Find the keys that point to the rows. Returns `numpy.ndarray`. ~~Iterable[int]~~             |
 | ||
| | **RETURNS**    | The requested key, keys, row or rows. ~~Union[int, numpy.ndarray[ndim=1, dtype=float32]]~~   |
 | ||
| 
 | ||
| ## Vectors.shape {id="shape",tag="property"}
 | ||
| 
 | ||
| Get `(rows, dims)` tuples of number of rows and number of dimensions in the
 | ||
| vector table.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > vectors = Vectors(shape(1, 300))
 | ||
| > vectors.add("cat", numpy.random.uniform(-1, 1, (300,)))
 | ||
| > rows, dims = vectors.shape
 | ||
| > assert rows == 1
 | ||
| > assert dims == 300
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Description                                |
 | ||
| | ----------- | ------------------------------------------ |
 | ||
| | **RETURNS** | A `(rows, dims)` pair. ~~Tuple[int, int]~~ |
 | ||
| 
 | ||
| ## Vectors.size {id="size",tag="property"}
 | ||
| 
 | ||
| The vector size, i.e. `rows * dims`.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > vectors = Vectors(shape=(500, 300))
 | ||
| > assert vectors.size == 150000
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Description              |
 | ||
| | ----------- | ------------------------ |
 | ||
| | **RETURNS** | The vector size. ~~int~~ |
 | ||
| 
 | ||
| ## Vectors.is_full {id="is_full",tag="property"}
 | ||
| 
 | ||
| Whether the vectors table is full and no slots are available for new keys. If a
 | ||
| table is full, it can be resized using [`Vectors.resize`](/api/vectors#resize).
 | ||
| In `floret` mode, the table is always full and cannot be resized.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > vectors = Vectors(shape=(1, 300))
 | ||
| > vectors.add("cat", numpy.random.uniform(-1, 1, (300,)))
 | ||
| > assert vectors.is_full
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Description                                 |
 | ||
| | ----------- | ------------------------------------------- |
 | ||
| | **RETURNS** | Whether the vectors table is full. ~~bool~~ |
 | ||
| 
 | ||
| ## Vectors.n_keys {id="n_keys",tag="property"}
 | ||
| 
 | ||
| Get the number of keys in the table. Note that this is the number of _all_ keys,
 | ||
| not just unique vectors. If several keys are mapped to the same vectors, they
 | ||
| will be counted individually. In `floret` mode, the keys table is not used.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > vectors = Vectors(shape=(10, 300))
 | ||
| > assert len(vectors) == 10
 | ||
| > assert vectors.n_keys == 0
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Description                                                                   |
 | ||
| | ----------- | ----------------------------------------------------------------------------- |
 | ||
| | **RETURNS** | The number of all keys in the table. Returns `-1` for floret vectors. ~~int~~ |
 | ||
| 
 | ||
| ## Vectors.most_similar {id="most_similar",tag="method"}
 | ||
| 
 | ||
| For each of the given vectors, find the `n` most similar entries to it by
 | ||
| cosine. Queries are by vector. Results are returned as a
 | ||
| `(keys, best_rows, scores)` tuple. If `queries` is large, the calculations are
 | ||
| performed in chunks to avoid consuming too much memory. You can set the
 | ||
| `batch_size` to control the size/space trade-off during the calculations. Not
 | ||
| supported for `floret` mode.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > queries = numpy.asarray([numpy.random.uniform(-1, 1, (300,))])
 | ||
| > most_similar = nlp.vocab.vectors.most_similar(queries, n=10)
 | ||
| > ```
 | ||
| 
 | ||
| | Name           | Description                                                                                                             |
 | ||
| | -------------- | ----------------------------------------------------------------------------------------------------------------------- |
 | ||
| | `queries`      | An array with one or more vectors. ~~numpy.ndarray~~                                                                    |
 | ||
| | _keyword-only_ |                                                                                                                         |
 | ||
| | `batch_size`   | The batch size to use. Default to `1024`. ~~int~~                                                                       |
 | ||
| | `n`            | The number of entries to return for each query. Defaults to `1`. ~~int~~                                                |
 | ||
| | `sort`         | Whether to sort the entries returned by score. Defaults to `True`. ~~bool~~                                             |
 | ||
| | **RETURNS**    | The most similar entries as a `(keys, best_rows, scores)` tuple. ~~Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]~~ |
 | ||
| 
 | ||
| ## Vectors.get_batch {id="get_batch",tag="method",version="3.2"}
 | ||
| 
 | ||
| Get the vectors for the provided keys efficiently as a batch.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > words = ["cat", "dog"]
 | ||
| > vectors = nlp.vocab.vectors.get_batch(words)
 | ||
| > ```
 | ||
| 
 | ||
| | Name   | Description                             |
 | ||
| | ------ | --------------------------------------- |
 | ||
| | `keys` | The keys. ~~Iterable[Union[int, str]]~~ |
 | ||
| 
 | ||
| ## Vectors.to_ops {id="to_ops",tag="method"}
 | ||
| 
 | ||
| Change the embedding matrix to use different Thinc ops.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > from thinc.api import NumpyOps
 | ||
| >
 | ||
| > vectors.to_ops(NumpyOps())
 | ||
| >
 | ||
| > ```
 | ||
| 
 | ||
| | Name  | Description                                              |
 | ||
| | ----- | -------------------------------------------------------- |
 | ||
| | `ops` | The Thinc ops to switch the embedding matrix to. ~~Ops~~ |
 | ||
| 
 | ||
| ## Vectors.to_disk {id="to_disk",tag="method"}
 | ||
| 
 | ||
| Save the current state to a directory.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > vectors.to_disk("/path/to/vectors")
 | ||
| >
 | ||
| > ```
 | ||
| 
 | ||
| | Name   | Description                                                                                                                                |
 | ||
| | ------ | ------------------------------------------------------------------------------------------------------------------------------------------ |
 | ||
| | `path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
 | ||
| 
 | ||
| ## Vectors.from_disk {id="from_disk",tag="method"}
 | ||
| 
 | ||
| Loads state from a directory. Modifies the object in place and returns it.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > vectors = Vectors(StringStore())
 | ||
| > vectors.from_disk("/path/to/vectors")
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Description                                                                                     |
 | ||
| | ----------- | ----------------------------------------------------------------------------------------------- |
 | ||
| | `path`      | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
 | ||
| | **RETURNS** | The modified `Vectors` object. ~~Vectors~~                                                      |
 | ||
| 
 | ||
| ## Vectors.to_bytes {id="to_bytes",tag="method"}
 | ||
| 
 | ||
| Serialize the current state to a binary string.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > vectors_bytes = vectors.to_bytes()
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Description                                            |
 | ||
| | ----------- | ------------------------------------------------------ |
 | ||
| | **RETURNS** | The serialized form of the `Vectors` object. ~~bytes~~ |
 | ||
| 
 | ||
| ## Vectors.from_bytes {id="from_bytes",tag="method"}
 | ||
| 
 | ||
| Load state from a binary string.
 | ||
| 
 | ||
| > #### Example
 | ||
| >
 | ||
| > ```python
 | ||
| > from spacy.vectors import Vectors
 | ||
| > vectors_bytes = vectors.to_bytes()
 | ||
| > new_vectors = Vectors(StringStore())
 | ||
| > new_vectors.from_bytes(vectors_bytes)
 | ||
| > ```
 | ||
| 
 | ||
| | Name        | Description                       |
 | ||
| | ----------- | --------------------------------- |
 | ||
| | `data`      | The data to load from. ~~bytes~~  |
 | ||
| | **RETURNS** | The `Vectors` object. ~~Vectors~~ |
 | ||
| 
 | ||
| ## Attributes {id="attributes"}
 | ||
| 
 | ||
| | Name                                | Description                                                                                                                                                          |
 | ||
| | ----------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | ||
| | `data`                              | Stored vectors data. `numpy` is used for CPU vectors, `cupy` for GPU vectors. ~~Union[numpy.ndarray[ndim=1, dtype=float32], cupy.ndarray[ndim=1, dtype=float32]]~~   |
 | ||
| | `key2row`                           | Dictionary mapping word hashes to rows in the `Vectors.data` table. ~~Dict[int, int]~~                                                                               |
 | ||
| | `keys`                              | Array keeping the keys in order, such that `keys[vectors.key2row[key]] == key`. ~~Union[numpy.ndarray[ndim=1, dtype=float32], cupy.ndarray[ndim=1, dtype=float32]]~~ |
 | ||
| | `attr` <Tag variant="new">3.6</Tag> | The token attribute for the vector keys. ~~int~~                                                                                                                     |
 |