spaCy/spacy/cli/debug_data.py
2019-08-16 10:53:38 +02:00

557 lines
21 KiB
Python

# coding: utf8
from __future__ import unicode_literals, print_function
from pathlib import Path
from collections import Counter
import plac
import sys
import srsly
from wasabi import Printer, MESSAGES
from ..gold import GoldCorpus, read_json_object
from ..syntax import nonproj
from ..util import load_model, get_lang_class
# Minimum number of expected occurrences of NER label in data to train new label
NEW_LABEL_THRESHOLD = 50
# Minimum number of expected occurrences of dependency labels
DEP_LABEL_THRESHOLD = 20
# Minimum number of expected examples to train a blank model
BLANK_MODEL_MIN_THRESHOLD = 100
BLANK_MODEL_THRESHOLD = 2000
@plac.annotations(
lang=("model language", "positional", None, str),
train_path=("location of JSON-formatted training data", "positional", None, Path),
dev_path=("location of JSON-formatted development data", "positional", None, Path),
base_model=("name of model to update (optional)", "option", "b", str),
pipeline=(
"Comma-separated names of pipeline components to train",
"option",
"p",
str,
),
ignore_warnings=("Ignore warnings, only show stats and errors", "flag", "IW", bool),
ignore_validation=(
"Don't exit if JSON format validation fails",
"flag",
"IV",
bool,
),
verbose=("Print additional information and explanations", "flag", "V", bool),
no_format=("Don't pretty-print the results", "flag", "NF", bool),
)
def debug_data(
lang,
train_path,
dev_path,
base_model=None,
pipeline="tagger,parser,ner",
ignore_warnings=False,
ignore_validation=False,
verbose=False,
no_format=False,
):
msg = Printer(pretty=not no_format, ignore_warnings=ignore_warnings)
# Make sure all files and paths exists if they are needed
if not train_path.exists():
msg.fail("Training data not found", train_path, exits=1)
if not dev_path.exists():
msg.fail("Development data not found", dev_path, exits=1)
# Initialize the model and pipeline
pipeline = [p.strip() for p in pipeline.split(",")]
if base_model:
nlp = load_model(base_model)
else:
lang_cls = get_lang_class(lang)
nlp = lang_cls()
msg.divider("Data format validation")
# Validate data format using the JSON schema
# TODO: update once the new format is ready
# TODO: move validation to GoldCorpus in order to be able to load from dir
train_data_errors = [] # TODO: validate_json
dev_data_errors = [] # TODO: validate_json
if not train_data_errors:
msg.good("Training data JSON format is valid")
if not dev_data_errors:
msg.good("Development data JSON format is valid")
for error in train_data_errors:
msg.fail("Training data: {}".format(error))
for error in dev_data_errors:
msg.fail("Develoment data: {}".format(error))
if (train_data_errors or dev_data_errors) and not ignore_validation:
sys.exit(1)
# Create the gold corpus to be able to better analyze data
loading_train_error_message = ""
loading_dev_error_message = ""
with msg.loading("Loading corpus..."):
corpus = GoldCorpus(train_path, dev_path)
try:
train_docs = list(corpus.train_docs(nlp))
train_docs_unpreprocessed = list(corpus.train_docs_without_preprocessing(nlp))
except ValueError as e:
loading_train_error_message = "Training data cannot be loaded: {}".format(str(e))
try:
dev_docs = list(corpus.dev_docs(nlp))
except ValueError as e:
loading_dev_error_message = "Development data cannot be loaded: {}".format(str(e))
if loading_train_error_message or loading_dev_error_message:
if loading_train_error_message:
msg.fail(loading_train_error_message)
if loading_dev_error_message:
msg.fail(loading_dev_error_message)
sys.exit(1)
msg.good("Corpus is loadable")
# Create all gold data here to avoid iterating over the train_docs constantly
gold_train_data = _compile_gold(train_docs, pipeline)
gold_train_unpreprocessed_data = _compile_gold(train_docs_unpreprocessed, pipeline)
gold_dev_data = _compile_gold(dev_docs, pipeline)
train_texts = gold_train_data["texts"]
dev_texts = gold_dev_data["texts"]
msg.divider("Training stats")
msg.text("Training pipeline: {}".format(", ".join(pipeline)))
for pipe in [p for p in pipeline if p not in nlp.factories]:
msg.fail("Pipeline component '{}' not available in factories".format(pipe))
if base_model:
msg.text("Starting with base model '{}'".format(base_model))
else:
msg.text("Starting with blank model '{}'".format(lang))
msg.text("{} training docs".format(len(train_docs)))
msg.text("{} evaluation docs".format(len(dev_docs)))
overlap = len(train_texts.intersection(dev_texts))
if overlap:
msg.warn("{} training examples also in evaluation data".format(overlap))
else:
msg.good("No overlap between training and evaluation data")
if not base_model and len(train_docs) < BLANK_MODEL_THRESHOLD:
text = "Low number of examples to train from a blank model ({})".format(
len(train_docs)
)
if len(train_docs) < BLANK_MODEL_MIN_THRESHOLD:
msg.fail(text)
else:
msg.warn(text)
msg.text(
"It's recommended to use at least {} examples (minimum {})".format(
BLANK_MODEL_THRESHOLD, BLANK_MODEL_MIN_THRESHOLD
),
show=verbose,
)
msg.divider("Vocab & Vectors")
n_words = gold_train_data["n_words"]
msg.info(
"{} total {} in the data ({} unique)".format(
n_words, "word" if n_words == 1 else "words", len(gold_train_data["words"])
)
)
if gold_train_data["n_misaligned_words"] > 0:
msg.warn(
"{} misaligned tokens in the training data".format(gold_train_data["n_misaligned_words"])
)
if gold_dev_data["n_misaligned_words"] > 0:
msg.warn(
"{} misaligned tokens in the dev data".format(gold_dev_data["n_misaligned_words"])
)
most_common_words = gold_train_data["words"].most_common(10)
msg.text(
"10 most common words: {}".format(
_format_labels(most_common_words, counts=True)
),
show=verbose,
)
if len(nlp.vocab.vectors):
msg.info(
"{} vectors ({} unique keys, {} dimensions)".format(
len(nlp.vocab.vectors),
nlp.vocab.vectors.n_keys,
nlp.vocab.vectors_length,
)
)
else:
msg.info("No word vectors present in the model")
if "ner" in pipeline:
# Get all unique NER labels present in the data
labels = set(label for label in gold_train_data["ner"] if label not in ("O", "-"))
label_counts = gold_train_data["ner"]
model_labels = _get_labels_from_model(nlp, "ner")
new_labels = [l for l in labels if l not in model_labels]
existing_labels = [l for l in labels if l in model_labels]
has_low_data_warning = False
has_no_neg_warning = False
has_ws_ents_error = False
msg.divider("Named Entity Recognition")
msg.info(
"{} new {}, {} existing {}".format(
len(new_labels),
"label" if len(new_labels) == 1 else "labels",
len(existing_labels),
"label" if len(existing_labels) == 1 else "labels",
)
)
missing_values = label_counts["-"]
msg.text(
"{} missing {} (tokens with '-' label)".format(
missing_values, "value" if missing_values == 1 else "values"
)
)
if new_labels:
labels_with_counts = [
(label, count)
for label, count in label_counts.most_common()
if label != "-"
]
labels_with_counts = _format_labels(labels_with_counts, counts=True)
msg.text("New: {}".format(labels_with_counts), show=verbose)
if existing_labels:
msg.text(
"Existing: {}".format(_format_labels(existing_labels)), show=verbose
)
if gold_train_data["ws_ents"]:
msg.fail("{} invalid whitespace entity spans".format(gold_train_data["ws_ents"]))
has_ws_ents_error = True
for label in new_labels:
if label_counts[label] <= NEW_LABEL_THRESHOLD:
msg.warn(
"Low number of examples for new label '{}' ({})".format(
label, label_counts[label]
)
)
has_low_data_warning = True
with msg.loading("Analyzing label distribution..."):
neg_docs = _get_examples_without_label(train_docs, label)
if neg_docs == 0:
msg.warn(
"No examples for texts WITHOUT new label '{}'".format(label)
)
has_no_neg_warning = True
if not has_low_data_warning:
msg.good("Good amount of examples for all labels")
if not has_no_neg_warning:
msg.good("Examples without occurrences available for all labels")
if not has_ws_ents_error:
msg.good("No entities consisting of or starting/ending with whitespace")
if has_low_data_warning:
msg.text(
"To train a new entity type, your data should include at "
"least {} instances of the new label".format(NEW_LABEL_THRESHOLD),
show=verbose,
)
if has_no_neg_warning:
msg.text(
"Training data should always include examples of entities "
"in context, as well as examples without a given entity "
"type.",
show=verbose,
)
if has_ws_ents_error:
msg.text(
"As of spaCy v2.1.0, entity spans consisting of or starting/ending "
"with whitespace characters are considered invalid."
)
if "textcat" in pipeline:
msg.divider("Text Classification")
labels = [label for label in gold_train_data["textcat"]]
model_labels = _get_labels_from_model(nlp, "textcat")
new_labels = [l for l in labels if l not in model_labels]
existing_labels = [l for l in labels if l in model_labels]
msg.info(
"Text Classification: {} new label(s), {} existing label(s)".format(
len(new_labels), len(existing_labels)
)
)
if new_labels:
labels_with_counts = _format_labels(
gold_train_data["textcat"].most_common(), counts=True
)
msg.text("New: {}".format(labels_with_counts), show=verbose)
if existing_labels:
msg.text(
"Existing: {}".format(_format_labels(existing_labels)), show=verbose
)
if "tagger" in pipeline:
msg.divider("Part-of-speech Tagging")
labels = [label for label in gold_train_data["tags"]]
tag_map = nlp.Defaults.tag_map
msg.info(
"{} {} in data ({} {} in tag map)".format(
len(labels),
"label" if len(labels) == 1 else "labels",
len(tag_map),
"label" if len(tag_map) == 1 else "labels",
)
)
labels_with_counts = _format_labels(
gold_train_data["tags"].most_common(), counts=True
)
msg.text(labels_with_counts, show=verbose)
non_tagmap = [l for l in labels if l not in tag_map]
if not non_tagmap:
msg.good("All labels present in tag map for language '{}'".format(nlp.lang))
for label in non_tagmap:
msg.fail(
"Label '{}' not found in tag map for language '{}'".format(
label, nlp.lang
)
)
if "parser" in pipeline:
msg.divider("Dependency Parsing")
# profile sentence length
msg.info(
"Found {} sentence{} with an average length of {:.1f} words.".format(
gold_train_data["n_sents"],
"s" if len(train_docs) > 1 else "",
gold_train_data["n_words"] / gold_train_data["n_sents"]
)
)
# profile labels
labels_train = [label for label in gold_train_data["deps"]]
labels_train_unpreprocessed = [label for label in gold_train_unpreprocessed_data["deps"]]
labels_dev = [label for label in gold_dev_data["deps"]]
if gold_train_unpreprocessed_data["n_nonproj"] > 0:
msg.info(
"Found {} nonprojective train sentence{}".format(
gold_train_unpreprocessed_data["n_nonproj"],
"s" if gold_train_unpreprocessed_data["n_nonproj"] > 1 else ""
)
)
if gold_dev_data["n_nonproj"] > 0:
msg.info(
"Found {} nonprojective dev sentence{}".format(
gold_dev_data["n_nonproj"],
"s" if gold_dev_data["n_nonproj"] > 1 else ""
)
)
msg.info(
"{} {} in train data".format(
len(labels_train_unpreprocessed), "label" if len(labels_train) == 1 else "labels"
)
)
msg.info(
"{} {} in projectivized train data".format(
len(labels_train), "label" if len(labels_train) == 1 else "labels"
)
)
labels_with_counts = _format_labels(
gold_train_unpreprocessed_data["deps"].most_common(), counts=True
)
msg.text(labels_with_counts, show=verbose)
# rare labels in train
for label in gold_train_unpreprocessed_data["deps"]:
if gold_train_unpreprocessed_data["deps"][label] <= DEP_LABEL_THRESHOLD:
msg.warn(
"Low number of examples for label '{}' ({})".format(
label, gold_train_unpreprocessed_data["deps"][label]
)
)
has_low_data_warning = True
# rare labels in projectivized train
rare_projectivized_labels = []
for label in gold_train_data["deps"]:
if gold_train_data["deps"][label] <= DEP_LABEL_THRESHOLD and "||" in label:
rare_projectivized_labels.append("{}: {}".format(label, str(gold_train_data["deps"][label])))
if len(rare_projectivized_labels) > 0:
msg.warn(
"Low number of examples for {} label{} in the "
"projectivized dependency trees used for training. You may "
"want to projectivize labels such as punct before "
"training in order to improve parser performance.".format(
len(rare_projectivized_labels),
"s" if len(rare_projectivized_labels) > 1 else "")
)
msg.warn(
"Projectivized labels with low numbers of examples: "
"{}".format("\n".join(rare_projectivized_labels)),
show=verbose
)
has_low_data_warning = True
# labels only in train
if set(labels_train) - set(labels_dev):
msg.warn(
"The following labels were found only in the train data: "
"{}".format(", ".join(set(labels_train) - set(labels_dev))),
show=verbose
)
# labels only in dev
if set(labels_dev) - set(labels_train):
msg.warn(
"The following labels were found only in the dev data: " +
", ".join(set(labels_dev) - set(labels_train)),
show=verbose
)
if has_low_data_warning:
msg.text(
"To train a parser, your data should include at "
"least {} instances of each label.".format(DEP_LABEL_THRESHOLD),
show=verbose,
)
# multiple root labels
if len(gold_train_unpreprocessed_data["roots"]) > 1:
msg.warn(
"Multiple root labels ({}) ".format(", ".join(gold_train_unpreprocessed_data["roots"])) +
"found in training data. spaCy's parser uses a single root "
"label ROOT so this distinction will not be available."
)
# these should not happen, but just in case
if gold_train_data["n_nonproj"] > 0:
msg.fail(
"Found {} nonprojective projectivized train sentence{}".format(
gold_train_data["n_nonproj"],
"s" if gold_train_data["n_nonproj"] > 1 else ""
)
)
if gold_train_data["n_cycles"] > 0:
msg.fail(
"Found {} projectivized train sentence{} with cycles".format(
gold_train_data["n_cycles"],
"s" if gold_train_data["n_cycles"] > 1 else ""
)
)
msg.divider("Summary")
good_counts = msg.counts[MESSAGES.GOOD]
warn_counts = msg.counts[MESSAGES.WARN]
fail_counts = msg.counts[MESSAGES.FAIL]
if good_counts:
msg.good(
"{} {} passed".format(
good_counts, "check" if good_counts == 1 else "checks"
)
)
if warn_counts:
msg.warn(
"{} {}".format(warn_counts, "warning" if warn_counts == 1 else "warnings")
)
if fail_counts:
msg.fail("{} {}".format(fail_counts, "error" if fail_counts == 1 else "errors"))
if fail_counts:
sys.exit(1)
def _load_file(file_path, msg):
file_name = file_path.parts[-1]
if file_path.suffix == ".json":
with msg.loading("Loading {}...".format(file_name)):
data = srsly.read_json(file_path)
msg.good("Loaded {}".format(file_name))
return data
elif file_path.suffix == ".jsonl":
with msg.loading("Loading {}...".format(file_name)):
data = srsly.read_jsonl(file_path)
msg.good("Loaded {}".format(file_name))
return data
msg.fail(
"Can't load file extension {}".format(file_path.suffix),
"Expected .json or .jsonl",
exits=1,
)
def _compile_gold(train_docs, pipeline):
data = {
"ner": Counter(),
"cats": Counter(),
"tags": Counter(),
"deps": Counter(),
"words": Counter(),
"roots": Counter(),
"ws_ents": 0,
"n_words": 0,
"n_misaligned_words": 0,
"n_sents": 0,
"n_nonproj": 0,
"n_cycles": 0,
"texts": set(),
}
for doc, gold in train_docs:
valid_words = [x for x in gold.words if x is not None]
data["words"].update(valid_words)
data["n_words"] += len(valid_words)
data["n_misaligned_words"] += len(gold.words) - len(valid_words)
data["texts"].add(doc.text)
if "ner" in pipeline:
for i, label in enumerate(gold.ner):
if label is None:
continue
if label.startswith(("B-", "U-", "L-")) and doc[i].is_space:
# "Illegal" whitespace entity
data["ws_ents"] += 1
if label.startswith(("B-", "U-")):
combined_label = label.split("-")[1]
data["ner"][combined_label] += 1
elif label == "-":
data["ner"]["-"] += 1
if "textcat" in pipeline:
data["cats"].update(gold.cats)
if "tagger" in pipeline:
data["tags"].update([x for x in gold.tags if x is not None])
if "parser" in pipeline:
data["deps"].update([x for x in gold.labels if x is not None])
for i, (dep, head) in enumerate(zip(gold.labels, gold.heads)):
if head == i:
data["roots"].update([dep])
data["n_sents"] += 1
if nonproj.is_nonproj_tree(gold.heads):
data["n_nonproj"] += 1
if nonproj.contains_cycle(gold.heads):
data["n_cycles"] += 1
return data
def _format_labels(labels, counts=False):
if counts:
return ", ".join(["'{}' ({})".format(l, c) for l, c in labels])
return ", ".join(["'{}'".format(l) for l in labels])
def _get_examples_without_label(data, label):
count = 0
for doc, gold in data:
labels = [label.split("-")[1] for label in gold.ner if label not in ("O", "-")]
if label not in labels:
count += 1
return count
def _get_labels_from_model(nlp, pipe_name):
if pipe_name not in nlp.pipe_names:
return set()
pipe = nlp.get_pipe(pipe_name)
return pipe.labels