mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			115 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			115 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#!/usr/bin/env python
 | 
						|
# coding: utf8
 | 
						|
"""Example of training spaCy's named entity recognizer, starting off with an
 | 
						|
existing model or a blank model.
 | 
						|
 | 
						|
For more details, see the documentation:
 | 
						|
* Training: https://alpha.spacy.io/usage/training
 | 
						|
* NER: https://alpha.spacy.io/usage/linguistic-features#named-entities
 | 
						|
 | 
						|
Developed for: spaCy 2.0.0a18
 | 
						|
Last updated for: spaCy 2.0.0a18
 | 
						|
"""
 | 
						|
from __future__ import unicode_literals, print_function
 | 
						|
 | 
						|
import plac
 | 
						|
import random
 | 
						|
from pathlib import Path
 | 
						|
 | 
						|
import spacy
 | 
						|
from spacy.gold import GoldParse, biluo_tags_from_offsets
 | 
						|
 | 
						|
 | 
						|
# training data
 | 
						|
TRAIN_DATA = [
 | 
						|
    ('Who is Shaka Khan?', [(7, 17, 'PERSON')]),
 | 
						|
    ('I like London and Berlin.', [(7, 13, 'LOC'), (18, 24, 'LOC')])
 | 
						|
]
 | 
						|
 | 
						|
 | 
						|
@plac.annotations(
 | 
						|
    model=("Model name. Defaults to blank 'en' model.", "option", "m", str),
 | 
						|
    output_dir=("Optional output directory", "option", "o", Path),
 | 
						|
    n_iter=("Number of training iterations", "option", "n", int))
 | 
						|
def main(model=None, output_dir=None, n_iter=100):
 | 
						|
    """Load the model, set up the pipeline and train the entity recognizer."""
 | 
						|
    if model is not None:
 | 
						|
        nlp = spacy.load(model)  # load existing spaCy model
 | 
						|
        print("Loaded model '%s'" % model)
 | 
						|
    else:
 | 
						|
        nlp = spacy.blank('en')  # create blank Language class
 | 
						|
        print("Created blank 'en' model")
 | 
						|
 | 
						|
    # create the built-in pipeline components and add them to the pipeline
 | 
						|
    # nlp.create_pipe works for built-ins that are registered with spaCy
 | 
						|
    if 'ner' not in nlp.pipe_names:
 | 
						|
        ner = nlp.create_pipe('ner')
 | 
						|
        nlp.add_pipe(ner, last=True)
 | 
						|
 | 
						|
    # function that allows begin_training to get the training data
 | 
						|
    get_data = lambda: reformat_train_data(nlp.tokenizer, TRAIN_DATA)
 | 
						|
 | 
						|
    # get names of other pipes to disable them during training
 | 
						|
    other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'ner']
 | 
						|
    with nlp.disable_pipes(*other_pipes):  # only train NER
 | 
						|
        optimizer = nlp.begin_training(get_data)
 | 
						|
        for itn in range(n_iter):
 | 
						|
            random.shuffle(TRAIN_DATA)
 | 
						|
            losses = {}
 | 
						|
            for raw_text, entity_offsets in TRAIN_DATA:
 | 
						|
                doc = nlp.make_doc(raw_text)
 | 
						|
                gold = GoldParse(doc, entities=entity_offsets)
 | 
						|
                nlp.update(
 | 
						|
                    [doc], # Batch of Doc objects
 | 
						|
                    [gold], # Batch of GoldParse objects
 | 
						|
                    drop=0.5, # Dropout -- make it harder to memorise data
 | 
						|
                    sgd=optimizer, # Callable to update weights
 | 
						|
                    losses=losses)
 | 
						|
            print(losses)
 | 
						|
 | 
						|
    # test the trained model
 | 
						|
    for text, _ in TRAIN_DATA:
 | 
						|
        doc = nlp(text)
 | 
						|
        print('Entities', [(ent.text, ent.label_) for ent in doc.ents])
 | 
						|
        print('Tokens', [(t.text, t.ent_type_, t.ent_iob) for t in doc])
 | 
						|
 | 
						|
    # save model to output directory
 | 
						|
    if output_dir is not None:
 | 
						|
        output_dir = Path(output_dir)
 | 
						|
        if not output_dir.exists():
 | 
						|
            output_dir.mkdir()
 | 
						|
        nlp.to_disk(output_dir)
 | 
						|
        print("Saved model to", output_dir)
 | 
						|
 | 
						|
        # test the saved model
 | 
						|
        print("Loading from", output_dir)
 | 
						|
        nlp2 = spacy.load(output_dir)
 | 
						|
        for text, _ in TRAIN_DATA:
 | 
						|
            doc = nlp2(text)
 | 
						|
            print('Entities', [(ent.text, ent.label_) for ent in doc.ents])
 | 
						|
            print('Tokens', [(t.text, t.ent_type_, t.ent_iob) for t in doc])
 | 
						|
 | 
						|
 | 
						|
def reformat_train_data(tokenizer, examples):
 | 
						|
    """Reformat data to match JSON format.
 | 
						|
    https://alpha.spacy.io/api/annotation#json-input
 | 
						|
 | 
						|
    tokenizer (Tokenizer): Tokenizer to process the raw text.
 | 
						|
    examples (list): The trainig data.
 | 
						|
    RETURNS (list): The reformatted training data."""
 | 
						|
    output = []
 | 
						|
    for i, (text, entity_offsets) in enumerate(examples):
 | 
						|
        doc = tokenizer(text)
 | 
						|
        ner_tags = biluo_tags_from_offsets(tokenizer(text), entity_offsets)
 | 
						|
        words = [w.text for w in doc]
 | 
						|
        tags = ['-'] * len(doc)
 | 
						|
        heads = [0] * len(doc)
 | 
						|
        deps = [''] * len(doc)
 | 
						|
        sentence = (range(len(doc)), words, tags, heads, deps, ner_tags)
 | 
						|
        output.append((text, [(sentence, [])]))
 | 
						|
    return output
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    plac.call(main)
 |