mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	* Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
		
			
				
	
	
		
			147 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			147 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import warnings
 | 
						|
from unittest import TestCase
 | 
						|
import pytest
 | 
						|
import srsly
 | 
						|
from numpy import zeros
 | 
						|
from spacy.kb import KnowledgeBase, Writer
 | 
						|
from spacy.vectors import Vectors
 | 
						|
from spacy.language import Language
 | 
						|
from spacy.pipeline import Pipe
 | 
						|
from spacy.util import registry
 | 
						|
 | 
						|
from ..util import make_tempdir
 | 
						|
 | 
						|
 | 
						|
def nlp():
 | 
						|
    return Language()
 | 
						|
 | 
						|
 | 
						|
def vectors():
 | 
						|
    data = zeros((3, 1), dtype="f")
 | 
						|
    keys = ["cat", "dog", "rat"]
 | 
						|
    return Vectors(data=data, keys=keys)
 | 
						|
 | 
						|
 | 
						|
def custom_pipe():
 | 
						|
    # create dummy pipe partially implementing interface -- only want to test to_disk
 | 
						|
    class SerializableDummy:
 | 
						|
        def __init__(self, **cfg):
 | 
						|
            if cfg:
 | 
						|
                self.cfg = cfg
 | 
						|
            else:
 | 
						|
                self.cfg = None
 | 
						|
            super(SerializableDummy, self).__init__()
 | 
						|
 | 
						|
        def to_bytes(self, exclude=tuple(), disable=None, **kwargs):
 | 
						|
            return srsly.msgpack_dumps({"dummy": srsly.json_dumps(None)})
 | 
						|
 | 
						|
        def from_bytes(self, bytes_data, exclude):
 | 
						|
            return self
 | 
						|
 | 
						|
        def to_disk(self, path, exclude=tuple(), **kwargs):
 | 
						|
            pass
 | 
						|
 | 
						|
        def from_disk(self, path, exclude=tuple(), **kwargs):
 | 
						|
            return self
 | 
						|
 | 
						|
    class MyPipe(Pipe):
 | 
						|
        def __init__(self, vocab, model=True, **cfg):
 | 
						|
            if cfg:
 | 
						|
                self.cfg = cfg
 | 
						|
            else:
 | 
						|
                self.cfg = None
 | 
						|
            self.model = SerializableDummy()
 | 
						|
            self.vocab = SerializableDummy()
 | 
						|
 | 
						|
    return MyPipe(None)
 | 
						|
 | 
						|
 | 
						|
def tagger():
 | 
						|
    nlp = Language()
 | 
						|
    tagger = nlp.add_pipe("tagger")
 | 
						|
    # need to add model for two reasons:
 | 
						|
    # 1. no model leads to error in serialization,
 | 
						|
    # 2. the affected line is the one for model serialization
 | 
						|
    with pytest.warns(UserWarning):
 | 
						|
        tagger.begin_training(pipeline=nlp.pipeline)
 | 
						|
    return tagger
 | 
						|
 | 
						|
 | 
						|
def entity_linker():
 | 
						|
    nlp = Language()
 | 
						|
 | 
						|
    @registry.assets.register("TestIssue5230KB.v1")
 | 
						|
    def dummy_kb() -> KnowledgeBase:
 | 
						|
        kb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | 
						|
        kb.add_entity("test", 0.0, zeros((1, 1), dtype="f"))
 | 
						|
        return kb
 | 
						|
 | 
						|
    config = {"kb": {"@assets": "TestIssue5230KB.v1"}}
 | 
						|
    entity_linker = nlp.add_pipe("entity_linker", config=config)
 | 
						|
    # need to add model for two reasons:
 | 
						|
    # 1. no model leads to error in serialization,
 | 
						|
    # 2. the affected line is the one for model serialization
 | 
						|
    entity_linker.begin_training(pipeline=nlp.pipeline)
 | 
						|
    return entity_linker
 | 
						|
 | 
						|
 | 
						|
objects_to_test = (
 | 
						|
    [nlp(), vectors(), custom_pipe(), tagger(), entity_linker()],
 | 
						|
    ["nlp", "vectors", "custom_pipe", "tagger", "entity_linker"],
 | 
						|
)
 | 
						|
 | 
						|
 | 
						|
def write_obj_and_catch_warnings(obj):
 | 
						|
    with make_tempdir() as d:
 | 
						|
        with warnings.catch_warnings(record=True) as warnings_list:
 | 
						|
            warnings.filterwarnings("always", category=ResourceWarning)
 | 
						|
            obj.to_disk(d)
 | 
						|
            # in python3.5 it seems that deprecation warnings are not filtered by filterwarnings
 | 
						|
            return list(filter(lambda x: isinstance(x, ResourceWarning), warnings_list))
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("obj", objects_to_test[0], ids=objects_to_test[1])
 | 
						|
def test_to_disk_resource_warning(obj):
 | 
						|
    warnings_list = write_obj_and_catch_warnings(obj)
 | 
						|
    assert len(warnings_list) == 0
 | 
						|
 | 
						|
 | 
						|
def test_writer_with_path_py35():
 | 
						|
    writer = None
 | 
						|
    with make_tempdir() as d:
 | 
						|
        path = d / "test"
 | 
						|
        try:
 | 
						|
            writer = Writer(path)
 | 
						|
        except Exception as e:
 | 
						|
            pytest.fail(str(e))
 | 
						|
        finally:
 | 
						|
            if writer:
 | 
						|
                writer.close()
 | 
						|
 | 
						|
 | 
						|
def test_save_and_load_knowledge_base():
 | 
						|
    nlp = Language()
 | 
						|
    kb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | 
						|
    with make_tempdir() as d:
 | 
						|
        path = d / "kb"
 | 
						|
        try:
 | 
						|
            kb.dump(path)
 | 
						|
        except Exception as e:
 | 
						|
            pytest.fail(str(e))
 | 
						|
 | 
						|
        try:
 | 
						|
            kb_loaded = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | 
						|
            kb_loaded.load_bulk(path)
 | 
						|
        except Exception as e:
 | 
						|
            pytest.fail(str(e))
 | 
						|
 | 
						|
 | 
						|
class TestToDiskResourceWarningUnittest(TestCase):
 | 
						|
    def test_resource_warning(self):
 | 
						|
        scenarios = zip(*objects_to_test)
 | 
						|
 | 
						|
        for scenario in scenarios:
 | 
						|
            with self.subTest(msg=scenario[1]):
 | 
						|
                warnings_list = write_obj_and_catch_warnings(scenario[0])
 | 
						|
                self.assertEqual(len(warnings_list), 0)
 |