mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-26 13:41:21 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			495 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			495 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| ---
 | |
| title: SpanCategorizer
 | |
| tag: class,experimental
 | |
| source: spacy/pipeline/spancat.py
 | |
| version: 3.1
 | |
| teaser: 'Pipeline component for labeling potentially overlapping spans of text'
 | |
| api_base_class: /api/pipe
 | |
| api_string_name: spancat
 | |
| api_trainable: true
 | |
| ---
 | |
| 
 | |
| A span categorizer consists of two parts: a [suggester function](#suggesters)
 | |
| that proposes candidate spans, which may or may not overlap, and a labeler model
 | |
| that predicts zero or more labels for each candidate.
 | |
| 
 | |
| Predicted spans will be saved in a [`SpanGroup`](/api/spangroup) on the doc.
 | |
| Individual span scores can be found in `spangroup.attrs["scores"]`.
 | |
| 
 | |
| ## Assigned Attributes {id="assigned-attributes"}
 | |
| 
 | |
| Predictions will be saved to `Doc.spans[spans_key]` as a
 | |
| [`SpanGroup`](/api/spangroup). The scores for the spans in the `SpanGroup` will
 | |
| be saved in `SpanGroup.attrs["scores"]`.
 | |
| 
 | |
| `spans_key` defaults to `"sc"`, but can be passed as a parameter.
 | |
| 
 | |
| | Location                               | Value                                                    |
 | |
| | -------------------------------------- | -------------------------------------------------------- |
 | |
| | `Doc.spans[spans_key]`                 | The annotated spans. ~~SpanGroup~~                       |
 | |
| | `Doc.spans[spans_key].attrs["scores"]` | The score for each span in the `SpanGroup`. ~~Floats1d~~ |
 | |
| 
 | |
| ## Config and implementation {id="config"}
 | |
| 
 | |
| The default config is defined by the pipeline component factory and describes
 | |
| how the component should be configured. You can override its settings via the
 | |
| `config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
 | |
| [`config.cfg` for training](/usage/training#config). See the
 | |
| [model architectures](/api/architectures) documentation for details on the
 | |
| architectures and their arguments and hyperparameters.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > from spacy.pipeline.spancat import DEFAULT_SPANCAT_MODEL
 | |
| > config = {
 | |
| >     "threshold": 0.5,
 | |
| >     "spans_key": "labeled_spans",
 | |
| >     "max_positive": None,
 | |
| >     "model": DEFAULT_SPANCAT_MODEL,
 | |
| >     "suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]},
 | |
| > }
 | |
| > nlp.add_pipe("spancat", config=config)
 | |
| > ```
 | |
| 
 | |
| | Setting                                         | Description                                                                                                                                                                                                                                                                                             |
 | |
| | ----------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | |
| | `suggester`                                     | A function that [suggests spans](#suggesters). Spans are returned as a ragged array with two integer columns, for the start and end positions. Defaults to [`ngram_suggester`](#ngram_suggester). ~~Callable[[Iterable[Doc], Optional[Ops]], Ragged]~~                                                  |
 | |
| | `model`                                         | A model instance that is given a a list of documents and `(start, end)` indices representing candidate span offsets. The model predicts a probability for each category for each span. Defaults to [SpanCategorizer](/api/architectures#SpanCategorizer). ~~Model[Tuple[List[Doc], Ragged], Floats2d]~~ |
 | |
| | `spans_key`                                     | Key of the [`Doc.spans`](/api/doc#spans) dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. Defaults to `"sc"`. ~~str~~                                                                                  |
 | |
| | `threshold`                                     | Minimum probability to consider a prediction positive. Spans with a positive prediction will be saved on the Doc. Defaults to `0.5`. ~~float~~                                                                                                                                                          |
 | |
| | `max_positive`                                  | Maximum number of labels to consider positive per span. Defaults to `None`, indicating no limit. ~~Optional[int]~~                                                                                                                                                                                      |
 | |
| | `scorer`                                        | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for `Doc.spans[spans_key]` with overlapping spans allowed. ~~Optional[Callable]~~                                                                                                                                       |
 | |
| | `save_activations` <Tag variant="new">4.0</Tag> | Save activations in `Doc` when annotating. Saved activations are `"indices"` and `"scores"`. ~~Union[bool, list[str]]~~                                                                                                                                                                                 |
 | |
| 
 | |
| ```python
 | |
| %%GITHUB_SPACY/spacy/pipeline/spancat.py
 | |
| ```
 | |
| 
 | |
| ## SpanCategorizer.\_\_init\_\_ {id="init",tag="method"}
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > # Construction via add_pipe with default model
 | |
| > spancat = nlp.add_pipe("spancat")
 | |
| >
 | |
| > # Construction via add_pipe with custom model
 | |
| > config = {"model": {"@architectures": "my_spancat"}}
 | |
| > parser = nlp.add_pipe("spancat", config=config)
 | |
| >
 | |
| > # Construction from class
 | |
| > from spacy.pipeline import SpanCategorizer
 | |
| > spancat = SpanCategorizer(nlp.vocab, model, suggester)
 | |
| > ```
 | |
| 
 | |
| Create a new pipeline instance. In your application, you would normally use a
 | |
| shortcut for this and instantiate the component using its string name and
 | |
| [`nlp.add_pipe`](/api/language#create_pipe).
 | |
| 
 | |
| | Name           | Description                                                                                                                                                                                                                          |
 | |
| | -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
 | |
| | `vocab`        | The shared vocabulary. ~~Vocab~~                                                                                                                                                                                                     |
 | |
| | `model`        | A model instance that is given a a list of documents and `(start, end)` indices representing candidate span offsets. The model predicts a probability for each category for each span. ~~Model[Tuple[List[Doc], Ragged], Floats2d]~~ |
 | |
| | `suggester`    | A function that [suggests spans](#suggesters). Spans are returned as a ragged array with two integer columns, for the start and end positions. ~~Callable[[Iterable[Doc], Optional[Ops]], Ragged]~~                                  |
 | |
| | `name`         | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~                                                                                                                                  |
 | |
| | _keyword-only_ |                                                                                                                                                                                                                                      |
 | |
| | `spans_key`    | Key of the [`Doc.spans`](/api/doc#sans) dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. Defaults to `"sc"`. ~~str~~                |
 | |
| | `threshold`    | Minimum probability to consider a prediction positive. Spans with a positive prediction will be saved on the Doc. Defaults to `0.5`. ~~float~~                                                                                       |
 | |
| | `max_positive` | Maximum number of labels to consider positive per span. Defaults to `None`, indicating no limit. ~~Optional[int]~~                                                                                                                   |
 | |
| 
 | |
| ## SpanCategorizer.\_\_call\_\_ {id="call",tag="method"}
 | |
| 
 | |
| Apply the pipe to one document. The document is modified in place, and returned.
 | |
| This usually happens under the hood when the `nlp` object is called on a text
 | |
| and all pipeline components are applied to the `Doc` in order. Both
 | |
| [`__call__`](/api/spancategorizer#call) and [`pipe`](/api/spancategorizer#pipe)
 | |
| delegate to the [`predict`](/api/spancategorizer#predict) and
 | |
| [`set_annotations`](/api/spancategorizer#set_annotations) methods.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > doc = nlp("This is a sentence.")
 | |
| > spancat = nlp.add_pipe("spancat")
 | |
| > # This usually happens under the hood
 | |
| > processed = spancat(doc)
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                      |
 | |
| | ----------- | -------------------------------- |
 | |
| | `doc`       | The document to process. ~~Doc~~ |
 | |
| | **RETURNS** | The processed document. ~~Doc~~  |
 | |
| 
 | |
| ## SpanCategorizer.pipe {id="pipe",tag="method"}
 | |
| 
 | |
| Apply the pipe to a stream of documents. This usually happens under the hood
 | |
| when the `nlp` object is called on a text and all pipeline components are
 | |
| applied to the `Doc` in order. Both [`__call__`](/api/spancategorizer#call) and
 | |
| [`pipe`](/api/spancategorizer#pipe) delegate to the
 | |
| [`predict`](/api/spancategorizer#predict) and
 | |
| [`set_annotations`](/api/spancategorizer#set_annotations) methods.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > spancat = nlp.add_pipe("spancat")
 | |
| > for doc in spancat.pipe(docs, batch_size=50):
 | |
| >     pass
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                   |
 | |
| | -------------- | ------------------------------------------------------------- |
 | |
| | `stream`       | A stream of documents. ~~Iterable[Doc]~~                      |
 | |
| | _keyword-only_ |                                                               |
 | |
| | `batch_size`   | The number of documents to buffer. Defaults to `128`. ~~int~~ |
 | |
| | **YIELDS**     | The processed documents in order. ~~Doc~~                     |
 | |
| 
 | |
| ## SpanCategorizer.initialize {id="initialize",tag="method"}
 | |
| 
 | |
| Initialize the component for training. `get_examples` should be a function that
 | |
| returns an iterable of [`Example`](/api/example) objects. **At least one example
 | |
| should be supplied.** The data examples are used to **initialize the model** of
 | |
| the component and can either be the full training data or a representative
 | |
| sample. Initialization includes validating the network,
 | |
| [inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and
 | |
| setting up the label scheme based on the data. This method is typically called
 | |
| by [`Language.initialize`](/api/language#initialize) and lets you customize
 | |
| arguments it receives via the
 | |
| [`[initialize.components]`](/api/data-formats#config-initialize) block in the
 | |
| config.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > spancat = nlp.add_pipe("spancat")
 | |
| > spancat.initialize(lambda: examples, nlp=nlp)
 | |
| > ```
 | |
| >
 | |
| > ```ini
 | |
| > ### config.cfg
 | |
| > [initialize.components.spancat]
 | |
| >
 | |
| > [initialize.components.spancat.labels]
 | |
| > @readers = "spacy.read_labels.v1"
 | |
| > path = "corpus/labels/spancat.json
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                                                                                                                                                                                                                                                                                                                                |
 | |
| | -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | |
| | `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~                                                                                                                                                                                                                                 |
 | |
| | _keyword-only_ |                                                                                                                                                                                                                                                                                                                                                                                                            |
 | |
| | `nlp`          | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~                                                                                                                                                                                                                                                                                                                                       |
 | |
| | `labels`       | The label information to add to the component, as provided by the [`label_data`](#label_data) property after initialization. To generate a reusable JSON file from your data, you should run the [`init labels`](/api/cli#init-labels) command. If no labels are provided, the `get_examples` callback is used to extract the labels from the data, which may be a lot slower. ~~Optional[Iterable[str]]~~ |
 | |
| 
 | |
| ## SpanCategorizer.predict {id="predict",tag="method"}
 | |
| 
 | |
| Apply the component's model to a batch of [`Doc`](/api/doc) objects without
 | |
| modifying them.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > spancat = nlp.add_pipe("spancat")
 | |
| > scores = spancat.predict([doc1, doc2])
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                                 |
 | |
| | ----------- | ------------------------------------------- |
 | |
| | `docs`      | The documents to predict. ~~Iterable[Doc]~~ |
 | |
| | **RETURNS** | The model's prediction for each document.   |
 | |
| 
 | |
| ## SpanCategorizer.set_annotations {id="set_annotations",tag="method"}
 | |
| 
 | |
| Modify a batch of [`Doc`](/api/doc) objects using pre-computed scores.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > spancat = nlp.add_pipe("spancat")
 | |
| > scores = spancat.predict(docs)
 | |
| > spancat.set_annotations(docs, scores)
 | |
| > ```
 | |
| 
 | |
| | Name     | Description                                               |
 | |
| | -------- | --------------------------------------------------------- |
 | |
| | `docs`   | The documents to modify. ~~Iterable[Doc]~~                |
 | |
| | `scores` | The scores to set, produced by `SpanCategorizer.predict`. |
 | |
| 
 | |
| ## SpanCategorizer.update {id="update",tag="method"}
 | |
| 
 | |
| Learn from a batch of [`Example`](/api/example) objects containing the
 | |
| predictions and gold-standard annotations, and update the component's model.
 | |
| Delegates to [`predict`](/api/spancategorizer#predict) and
 | |
| [`get_loss`](/api/spancategorizer#get_loss).
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > spancat = nlp.add_pipe("spancat")
 | |
| > optimizer = nlp.initialize()
 | |
| > losses = spancat.update(examples, sgd=optimizer)
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                                              |
 | |
| | -------------- | ------------------------------------------------------------------------------------------------------------------------ |
 | |
| | `examples`     | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~                                        |
 | |
| | _keyword-only_ |                                                                                                                          |
 | |
| | `drop`         | The dropout rate. ~~float~~                                                                                              |
 | |
| | `sgd`          | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~            |
 | |
| | `losses`       | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
 | |
| | **RETURNS**    | The updated `losses` dictionary. ~~Dict[str, float]~~                                                                    |
 | |
| 
 | |
| ## SpanCategorizer.set_candidates {id="set_candidates",tag="method", version="3.3"}
 | |
| 
 | |
| Use the suggester to add a list of [`Span`](/api/span) candidates to a list of
 | |
| [`Doc`](/api/doc) objects. This method is intended to be used for debugging
 | |
| purposes.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > spancat = nlp.add_pipe("spancat")
 | |
| > spancat.set_candidates(docs, "candidates")
 | |
| > ```
 | |
| 
 | |
| | Name             | Description                                                          |
 | |
| | ---------------- | -------------------------------------------------------------------- |
 | |
| | `docs`           | The documents to modify. ~~Iterable[Doc]~~                           |
 | |
| | `candidates_key` | Key of the Doc.spans dict to save the candidate spans under. ~~str~~ |
 | |
| 
 | |
| ## SpanCategorizer.get_loss {id="get_loss",tag="method"}
 | |
| 
 | |
| Find the loss and gradient of loss for the batch of documents and their
 | |
| predicted scores.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > spancat = nlp.add_pipe("spancat")
 | |
| > scores = spancat.predict([eg.predicted for eg in examples])
 | |
| > loss, d_loss = spancat.get_loss(examples, scores)
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                 |
 | |
| | -------------- | --------------------------------------------------------------------------- |
 | |
| | `examples`     | The batch of examples. ~~Iterable[Example]~~                                |
 | |
| | `spans_scores` | Scores representing the model's predictions. ~~Tuple[Ragged, Floats2d]~~    |
 | |
| | **RETURNS**    | The loss and the gradient, i.e. `(loss, gradient)`. ~~Tuple[float, float]~~ |
 | |
| 
 | |
| ## SpanCategorizer.create_optimizer {id="create_optimizer",tag="method"}
 | |
| 
 | |
| Create an optimizer for the pipeline component.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > spancat = nlp.add_pipe("spancat")
 | |
| > optimizer = spancat.create_optimizer()
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                  |
 | |
| | ----------- | ---------------------------- |
 | |
| | **RETURNS** | The optimizer. ~~Optimizer~~ |
 | |
| 
 | |
| ## SpanCategorizer.use_params {id="use_params",tag="method, contextmanager"}
 | |
| 
 | |
| Modify the pipe's model to use the given parameter values.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > spancat = nlp.add_pipe("spancat")
 | |
| > with spancat.use_params(optimizer.averages):
 | |
| >     spancat.to_disk("/best_model")
 | |
| > ```
 | |
| 
 | |
| | Name     | Description                                        |
 | |
| | -------- | -------------------------------------------------- |
 | |
| | `params` | The parameter values to use in the model. ~~dict~~ |
 | |
| 
 | |
| ## SpanCategorizer.add_label {id="add_label",tag="method"}
 | |
| 
 | |
| Add a new label to the pipe. Raises an error if the output dimension is already
 | |
| set, or if the model has already been fully [initialized](#initialize). Note
 | |
| that you don't have to call this method if you provide a **representative data
 | |
| sample** to the [`initialize`](#initialize) method. In this case, all labels
 | |
| found in the sample will be automatically added to the model, and the output
 | |
| dimension will be [inferred](/usage/layers-architectures#thinc-shape-inference)
 | |
| automatically.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > spancat = nlp.add_pipe("spancat")
 | |
| > spancat.add_label("MY_LABEL")
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                                                 |
 | |
| | ----------- | ----------------------------------------------------------- |
 | |
| | `label`     | The label to add. ~~str~~                                   |
 | |
| | **RETURNS** | `0` if the label is already present, otherwise `1`. ~~int~~ |
 | |
| 
 | |
| ## SpanCategorizer.to_disk {id="to_disk",tag="method"}
 | |
| 
 | |
| Serialize the pipe to disk.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > spancat = nlp.add_pipe("spancat")
 | |
| > spancat.to_disk("/path/to/spancat")
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                                                                |
 | |
| | -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
 | |
| | `path`         | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
 | |
| | _keyword-only_ |                                                                                                                                            |
 | |
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~                                                |
 | |
| 
 | |
| ## SpanCategorizer.from_disk {id="from_disk",tag="method"}
 | |
| 
 | |
| Load the pipe from disk. Modifies the object in place and returns it.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > spancat = nlp.add_pipe("spancat")
 | |
| > spancat.from_disk("/path/to/spancat")
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                     |
 | |
| | -------------- | ----------------------------------------------------------------------------------------------- |
 | |
| | `path`         | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
 | |
| | _keyword-only_ |                                                                                                 |
 | |
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~     |
 | |
| | **RETURNS**    | The modified `SpanCategorizer` object. ~~SpanCategorizer~~                                      |
 | |
| 
 | |
| ## SpanCategorizer.to_bytes {id="to_bytes",tag="method"}
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > spancat = nlp.add_pipe("spancat")
 | |
| > spancat_bytes = spancat.to_bytes()
 | |
| > ```
 | |
| 
 | |
| Serialize the pipe to a bytestring.
 | |
| 
 | |
| | Name           | Description                                                                                 |
 | |
| | -------------- | ------------------------------------------------------------------------------------------- |
 | |
| | _keyword-only_ |                                                                                             |
 | |
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
 | |
| | **RETURNS**    | The serialized form of the `SpanCategorizer` object. ~~bytes~~                              |
 | |
| 
 | |
| ## SpanCategorizer.from_bytes {id="from_bytes",tag="method"}
 | |
| 
 | |
| Load the pipe from a bytestring. Modifies the object in place and returns it.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > spancat_bytes = spancat.to_bytes()
 | |
| > spancat = nlp.add_pipe("spancat")
 | |
| > spancat.from_bytes(spancat_bytes)
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                 |
 | |
| | -------------- | ------------------------------------------------------------------------------------------- |
 | |
| | `bytes_data`   | The data to load from. ~~bytes~~                                                            |
 | |
| | _keyword-only_ |                                                                                             |
 | |
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
 | |
| | **RETURNS**    | The `SpanCategorizer` object. ~~SpanCategorizer~~                                           |
 | |
| 
 | |
| ## SpanCategorizer.labels {id="labels",tag="property"}
 | |
| 
 | |
| The labels currently added to the component.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > spancat.add_label("MY_LABEL")
 | |
| > assert "MY_LABEL" in spancat.labels
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                                            |
 | |
| | ----------- | ------------------------------------------------------ |
 | |
| | **RETURNS** | The labels added to the component. ~~Tuple[str, ...]~~ |
 | |
| 
 | |
| ## SpanCategorizer.label_data {id="label_data",tag="property"}
 | |
| 
 | |
| The labels currently added to the component and their internal meta information.
 | |
| This is the data generated by [`init labels`](/api/cli#init-labels) and used by
 | |
| [`SpanCategorizer.initialize`](/api/spancategorizer#initialize) to initialize
 | |
| the model with a pre-defined label set.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > labels = spancat.label_data
 | |
| > spancat.initialize(lambda: [], nlp=nlp, labels=labels)
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                                                |
 | |
| | ----------- | ---------------------------------------------------------- |
 | |
| | **RETURNS** | The label data added to the component. ~~Tuple[str, ...]~~ |
 | |
| 
 | |
| ## Serialization fields {id="serialization-fields"}
 | |
| 
 | |
| During serialization, spaCy will export several data fields used to restore
 | |
| different aspects of the object. If needed, you can exclude them from
 | |
| serialization by passing in the string names via the `exclude` argument.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > data = spancat.to_disk("/path", exclude=["vocab"])
 | |
| > ```
 | |
| 
 | |
| | Name    | Description                                                    |
 | |
| | ------- | -------------------------------------------------------------- |
 | |
| | `vocab` | The shared [`Vocab`](/api/vocab).                              |
 | |
| | `cfg`   | The config file. You usually don't want to exclude this.       |
 | |
| | `model` | The binary model data. You usually don't want to exclude this. |
 | |
| 
 | |
| ## Suggesters {id="suggesters",tag="registered functions",source="spacy/pipeline/spancat.py"}
 | |
| 
 | |
| ### spacy.ngram_suggester.v1 {id="ngram_suggester"}
 | |
| 
 | |
| > #### Example Config
 | |
| >
 | |
| > ```ini
 | |
| > [components.spancat.suggester]
 | |
| > @misc = "spacy.ngram_suggester.v1"
 | |
| > sizes = [1, 2, 3]
 | |
| > ```
 | |
| 
 | |
| Suggest all spans of the given lengths. Spans are returned as a ragged array of
 | |
| integers. The array has two columns, indicating the start and end position.
 | |
| 
 | |
| | Name        | Description                                                                                                          |
 | |
| | ----------- | -------------------------------------------------------------------------------------------------------------------- |
 | |
| | `sizes`     | The phrase lengths to suggest. For example, `[1, 2]` will suggest phrases consisting of 1 or 2 tokens. ~~List[int]~~ |
 | |
| | **CREATES** | The suggester function. ~~Callable[[Iterable[Doc], Optional[Ops]], Ragged]~~                                         |
 | |
| 
 | |
| ### spacy.ngram_range_suggester.v1 {id="ngram_range_suggester"}
 | |
| 
 | |
| > #### Example Config
 | |
| >
 | |
| > ```ini
 | |
| > [components.spancat.suggester]
 | |
| > @misc = "spacy.ngram_range_suggester.v1"
 | |
| > min_size = 2
 | |
| > max_size = 4
 | |
| > ```
 | |
| 
 | |
| Suggest all spans of at least length `min_size` and at most length `max_size`
 | |
| (both inclusive). Spans are returned as a ragged array of integers. The array
 | |
| has two columns, indicating the start and end position.
 | |
| 
 | |
| | Name        | Description                                                                  |
 | |
| | ----------- | ---------------------------------------------------------------------------- |
 | |
| | `min_size`  | The minimal phrase lengths to suggest (inclusive). ~~[int]~~                 |
 | |
| | `max_size`  | The maximal phrase lengths to suggest (exclusive). ~~[int]~~                 |
 | |
| | **CREATES** | The suggester function. ~~Callable[[Iterable[Doc], Optional[Ops]], Ragged]~~ |
 |