mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-15 06:09:01 +03:00
f99d6d5e39
* Add scorer option to components Add an optional `scorer` parameter to all pipeline components. If a scoring function is provided, it overrides the default scoring method for that component. * Add registered scorers for all components * Add `scorers` registry * Move all scoring methods outside of components as independent functions and register * Use the registered scoring methods as defaults in configs and inits Additional: * The scoring methods no longer have access to the full component, so use settings from `cfg` as default scorer options to handle settings such as `labels`, `threshold`, and `positive_label` * The `attribute_ruler` scoring method no longer has access to the patterns, so all scoring methods are called * Bug fix: `spancat` scoring method is updated to set `allow_overlap` to score overlapping spans correctly * Update Russian lemmatizer to use direct score method * Check type of cfg in Pipe.score * Fix check * Update spacy/pipeline/sentencizer.pyx Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Remove validate_examples from scoring functions * Use Pipe.labels instead of Pipe.cfg["labels"] Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
48 lines
1.1 KiB
Python
48 lines
1.1 KiB
Python
from typing import Optional, Callable
|
|
from thinc.api import Model
|
|
|
|
from .stop_words import STOP_WORDS
|
|
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
|
|
from .punctuation import TOKENIZER_PREFIXES, TOKENIZER_INFIXES
|
|
from ...language import Language
|
|
from .lemmatizer import ItalianLemmatizer
|
|
|
|
|
|
class ItalianDefaults(Language.Defaults):
|
|
tokenizer_exceptions = TOKENIZER_EXCEPTIONS
|
|
stop_words = STOP_WORDS
|
|
prefixes = TOKENIZER_PREFIXES
|
|
infixes = TOKENIZER_INFIXES
|
|
|
|
|
|
class Italian(Language):
|
|
lang = "it"
|
|
Defaults = ItalianDefaults
|
|
|
|
|
|
@Italian.factory(
|
|
"lemmatizer",
|
|
assigns=["token.lemma"],
|
|
default_config={
|
|
"model": None,
|
|
"mode": "pos_lookup",
|
|
"overwrite": False,
|
|
"scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"},
|
|
},
|
|
default_score_weights={"lemma_acc": 1.0},
|
|
)
|
|
def make_lemmatizer(
|
|
nlp: Language,
|
|
model: Optional[Model],
|
|
name: str,
|
|
mode: str,
|
|
overwrite: bool,
|
|
scorer: Optional[Callable],
|
|
):
|
|
return ItalianLemmatizer(
|
|
nlp.vocab, model, name, mode=mode, overwrite=overwrite, scorer=scorer
|
|
)
|
|
|
|
|
|
__all__ = ["Italian"]
|