mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 02:06:31 +03:00
8fe7bdd0fa
* Fix typo in rule-based matching docs * Improve token pattern checking without validation Add more detailed token pattern checks without full JSON pattern validation and provide more detailed error messages. Addresses #4070 (also related: #4063, #4100). * Check whether top-level attributes in patterns and attr for PhraseMatcher are in token pattern schema * Check whether attribute value types are supported in general (as opposed to per attribute with full validation) * Report various internal error types (OverflowError, AttributeError, KeyError) as ValueError with standard error messages * Check for tagger/parser in PhraseMatcher pipeline for attributes TAG, POS, LEMMA, and DEP * Add error messages with relevant details on how to use validate=True or nlp() instead of nlp.make_doc() * Support attr=TEXT for PhraseMatcher * Add NORM to schema * Expand tests for pattern validation, Matcher, PhraseMatcher, and EntityRuler * Remove unnecessary .keys() * Rephrase error messages * Add another type check to Matcher Add another type check to Matcher for more understandable error messages in some rare cases. * Support phrase_matcher_attr=TEXT for EntityRuler * Don't use spacy.errors in examples and bin scripts * Fix error code * Auto-format Also try get Azure pipelines to finally start a build :( * Update errors.py Co-authored-by: Ines Montani <ines@ines.io> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
262 lines
9.8 KiB
Cython
262 lines
9.8 KiB
Cython
# cython: infer_types=True
|
|
# cython: profile=True
|
|
from __future__ import unicode_literals
|
|
|
|
from cymem.cymem cimport Pool
|
|
from murmurhash.mrmr cimport hash64
|
|
from preshed.maps cimport PreshMap
|
|
|
|
from .matcher cimport Matcher
|
|
from ..attrs cimport ORTH, POS, TAG, DEP, LEMMA, attr_id_t
|
|
from ..vocab cimport Vocab
|
|
from ..tokens.doc cimport Doc, get_token_attr
|
|
from ..typedefs cimport attr_t, hash_t
|
|
|
|
from ._schemas import TOKEN_PATTERN_SCHEMA
|
|
from ..errors import Errors, Warnings, deprecation_warning, user_warning
|
|
from ..attrs import FLAG61 as U_ENT
|
|
from ..attrs import FLAG60 as B2_ENT
|
|
from ..attrs import FLAG59 as B3_ENT
|
|
from ..attrs import FLAG58 as B4_ENT
|
|
from ..attrs import FLAG43 as L2_ENT
|
|
from ..attrs import FLAG42 as L3_ENT
|
|
from ..attrs import FLAG41 as L4_ENT
|
|
from ..attrs import FLAG42 as I3_ENT
|
|
from ..attrs import FLAG41 as I4_ENT
|
|
|
|
|
|
cdef class PhraseMatcher:
|
|
"""Efficiently match large terminology lists. While the `Matcher` matches
|
|
sequences based on lists of token descriptions, the `PhraseMatcher` accepts
|
|
match patterns in the form of `Doc` objects.
|
|
|
|
DOCS: https://spacy.io/api/phrasematcher
|
|
USAGE: https://spacy.io/usage/rule-based-matching#phrasematcher
|
|
"""
|
|
cdef Pool mem
|
|
cdef Vocab vocab
|
|
cdef Matcher matcher
|
|
cdef PreshMap phrase_ids
|
|
cdef int max_length
|
|
cdef attr_id_t attr
|
|
cdef public object _callbacks
|
|
cdef public object _patterns
|
|
cdef public object _docs
|
|
cdef public object _validate
|
|
|
|
def __init__(self, Vocab vocab, max_length=0, attr="ORTH", validate=False):
|
|
"""Initialize the PhraseMatcher.
|
|
|
|
vocab (Vocab): The shared vocabulary.
|
|
attr (int / unicode): Token attribute to match on.
|
|
validate (bool): Perform additional validation when patterns are added.
|
|
RETURNS (PhraseMatcher): The newly constructed object.
|
|
|
|
DOCS: https://spacy.io/api/phrasematcher#init
|
|
"""
|
|
if max_length != 0:
|
|
deprecation_warning(Warnings.W010)
|
|
self.mem = Pool()
|
|
self.max_length = max_length
|
|
self.vocab = vocab
|
|
self.matcher = Matcher(self.vocab, validate=False)
|
|
if isinstance(attr, long):
|
|
self.attr = attr
|
|
else:
|
|
attr = attr.upper()
|
|
if attr == "TEXT":
|
|
attr = "ORTH"
|
|
if attr not in TOKEN_PATTERN_SCHEMA["items"]["properties"]:
|
|
raise ValueError(Errors.E152.format(attr=attr))
|
|
self.attr = self.vocab.strings[attr]
|
|
self.phrase_ids = PreshMap()
|
|
abstract_patterns = [
|
|
[{U_ENT: True}],
|
|
[{B2_ENT: True}, {L2_ENT: True}],
|
|
[{B3_ENT: True}, {I3_ENT: True}, {L3_ENT: True}],
|
|
[{B4_ENT: True}, {I4_ENT: True}, {I4_ENT: True, "OP": "+"}, {L4_ENT: True}],
|
|
]
|
|
self.matcher.add("Candidate", None, *abstract_patterns)
|
|
self._callbacks = {}
|
|
self._docs = {}
|
|
self._validate = validate
|
|
|
|
def __len__(self):
|
|
"""Get the number of rules added to the matcher. Note that this only
|
|
returns the number of rules (identical with the number of IDs), not the
|
|
number of individual patterns.
|
|
|
|
RETURNS (int): The number of rules.
|
|
|
|
DOCS: https://spacy.io/api/phrasematcher#len
|
|
"""
|
|
return len(self._docs)
|
|
|
|
def __contains__(self, key):
|
|
"""Check whether the matcher contains rules for a match ID.
|
|
|
|
key (unicode): The match ID.
|
|
RETURNS (bool): Whether the matcher contains rules for this match ID.
|
|
|
|
DOCS: https://spacy.io/api/phrasematcher#contains
|
|
"""
|
|
cdef hash_t ent_id = self.matcher._normalize_key(key)
|
|
return ent_id in self._callbacks
|
|
|
|
def __reduce__(self):
|
|
data = (self.vocab, self._docs, self._callbacks)
|
|
return (unpickle_matcher, data, None, None)
|
|
|
|
def add(self, key, on_match, *docs):
|
|
"""Add a match-rule to the phrase-matcher. A match-rule consists of: an ID
|
|
key, an on_match callback, and one or more patterns.
|
|
|
|
key (unicode): The match ID.
|
|
on_match (callable): Callback executed on match.
|
|
*docs (Doc): `Doc` objects representing match patterns.
|
|
|
|
DOCS: https://spacy.io/api/phrasematcher#add
|
|
"""
|
|
cdef Doc doc
|
|
cdef hash_t ent_id = self.matcher._normalize_key(key)
|
|
self._callbacks[ent_id] = on_match
|
|
self._docs[ent_id] = docs
|
|
cdef int length
|
|
cdef int i
|
|
cdef hash_t phrase_hash
|
|
cdef Pool mem = Pool()
|
|
for doc in docs:
|
|
length = doc.length
|
|
if length == 0:
|
|
continue
|
|
if self.attr in (POS, TAG, LEMMA) and not doc.is_tagged:
|
|
raise ValueError(Errors.E155.format())
|
|
if self.attr == DEP and not doc.is_parsed:
|
|
raise ValueError(Errors.E156.format())
|
|
if self._validate and (doc.is_tagged or doc.is_parsed) \
|
|
and self.attr not in (DEP, POS, TAG, LEMMA):
|
|
string_attr = self.vocab.strings[self.attr]
|
|
user_warning(Warnings.W012.format(key=key, attr=string_attr))
|
|
tags = get_biluo(length)
|
|
phrase_key = <attr_t*>mem.alloc(length, sizeof(attr_t))
|
|
for i, tag in enumerate(tags):
|
|
attr_value = self.get_lex_value(doc, i)
|
|
lexeme = self.vocab[attr_value]
|
|
lexeme.set_flag(tag, True)
|
|
phrase_key[i] = lexeme.orth
|
|
phrase_hash = hash64(phrase_key, length * sizeof(attr_t), 0)
|
|
self.phrase_ids.set(phrase_hash, <void*>ent_id)
|
|
|
|
def __call__(self, Doc doc):
|
|
"""Find all sequences matching the supplied patterns on the `Doc`.
|
|
|
|
doc (Doc): The document to match over.
|
|
RETURNS (list): A list of `(key, start, end)` tuples,
|
|
describing the matches. A match tuple describes a span
|
|
`doc[start:end]`. The `label_id` and `key` are both integers.
|
|
|
|
DOCS: https://spacy.io/api/phrasematcher#call
|
|
"""
|
|
matches = []
|
|
if self.attr == ORTH:
|
|
match_doc = doc
|
|
else:
|
|
# If we're not matching on the ORTH, match_doc will be a Doc whose
|
|
# token.orth values are the attribute values we're matching on,
|
|
# e.g. Doc(nlp.vocab, words=[token.pos_ for token in doc])
|
|
words = [self.get_lex_value(doc, i) for i in range(len(doc))]
|
|
match_doc = Doc(self.vocab, words=words)
|
|
for _, start, end in self.matcher(match_doc):
|
|
ent_id = self.accept_match(match_doc, start, end)
|
|
if ent_id is not None:
|
|
matches.append((ent_id, start, end))
|
|
for i, (ent_id, start, end) in enumerate(matches):
|
|
on_match = self._callbacks.get(ent_id)
|
|
if on_match is not None:
|
|
on_match(self, doc, i, matches)
|
|
return matches
|
|
|
|
def pipe(self, stream, batch_size=1000, n_threads=-1, return_matches=False,
|
|
as_tuples=False):
|
|
"""Match a stream of documents, yielding them in turn.
|
|
|
|
docs (iterable): A stream of documents.
|
|
batch_size (int): Number of documents to accumulate into a working set.
|
|
return_matches (bool): Yield the match lists along with the docs, making
|
|
results (doc, matches) tuples.
|
|
as_tuples (bool): Interpret the input stream as (doc, context) tuples,
|
|
and yield (result, context) tuples out.
|
|
If both return_matches and as_tuples are True, the output will
|
|
be a sequence of ((doc, matches), context) tuples.
|
|
YIELDS (Doc): Documents, in order.
|
|
|
|
DOCS: https://spacy.io/api/phrasematcher#pipe
|
|
"""
|
|
if n_threads != -1:
|
|
deprecation_warning(Warnings.W016)
|
|
if as_tuples:
|
|
for doc, context in stream:
|
|
matches = self(doc)
|
|
if return_matches:
|
|
yield ((doc, matches), context)
|
|
else:
|
|
yield (doc, context)
|
|
else:
|
|
for doc in stream:
|
|
matches = self(doc)
|
|
if return_matches:
|
|
yield (doc, matches)
|
|
else:
|
|
yield doc
|
|
|
|
def accept_match(self, Doc doc, int start, int end):
|
|
cdef int i, j
|
|
cdef Pool mem = Pool()
|
|
phrase_key = <attr_t*>mem.alloc(end-start, sizeof(attr_t))
|
|
for i, j in enumerate(range(start, end)):
|
|
phrase_key[i] = doc.c[j].lex.orth
|
|
cdef hash_t key = hash64(phrase_key, (end-start) * sizeof(attr_t), 0)
|
|
ent_id = <hash_t>self.phrase_ids.get(key)
|
|
if ent_id == 0:
|
|
return None
|
|
else:
|
|
return ent_id
|
|
|
|
def get_lex_value(self, Doc doc, int i):
|
|
if self.attr == ORTH:
|
|
# Return the regular orth value of the lexeme
|
|
return doc.c[i].lex.orth
|
|
# Get the attribute value instead, e.g. token.pos
|
|
attr_value = get_token_attr(&doc.c[i], self.attr)
|
|
if attr_value in (0, 1):
|
|
# Value is boolean, convert to string
|
|
string_attr_value = str(attr_value)
|
|
else:
|
|
string_attr_value = self.vocab.strings[attr_value]
|
|
string_attr_name = self.vocab.strings[self.attr]
|
|
# Concatenate the attr name and value to not pollute lexeme space
|
|
# e.g. 'POS-VERB' instead of just 'VERB', which could otherwise
|
|
# create false positive matches
|
|
return "matcher:{}-{}".format(string_attr_name, string_attr_value)
|
|
|
|
|
|
def get_biluo(length):
|
|
if length == 0:
|
|
raise ValueError(Errors.E127)
|
|
elif length == 1:
|
|
return [U_ENT]
|
|
elif length == 2:
|
|
return [B2_ENT, L2_ENT]
|
|
elif length == 3:
|
|
return [B3_ENT, I3_ENT, L3_ENT]
|
|
else:
|
|
return [B4_ENT, I4_ENT] + [I4_ENT] * (length-3) + [L4_ENT]
|
|
|
|
|
|
def unpickle_matcher(vocab, docs, callbacks):
|
|
matcher = PhraseMatcher(vocab)
|
|
for key, specs in docs.items():
|
|
callback = callbacks.get(key, None)
|
|
matcher.add(key, callback, *specs)
|
|
return matcher
|