mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			75 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			75 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from __future__ import print_function, unicode_literals, division
 | 
						|
import io
 | 
						|
import bz2
 | 
						|
import logging
 | 
						|
from toolz import partition
 | 
						|
from os import path
 | 
						|
import re
 | 
						|
 | 
						|
import spacy.en
 | 
						|
from spacy.tokens import Doc
 | 
						|
 | 
						|
from joblib import Parallel, delayed
 | 
						|
import plac
 | 
						|
import ujson
 | 
						|
 | 
						|
 | 
						|
def parallelize(func, iterator, n_jobs, extra, backend='multiprocessing'):
 | 
						|
    extra = tuple(extra)
 | 
						|
    return Parallel(n_jobs=n_jobs, backend=backend)(delayed(func)(*(item + extra))
 | 
						|
                    for item in iterator)
 | 
						|
 | 
						|
 | 
						|
def iter_comments(loc):
 | 
						|
    with bz2.BZ2File(loc) as file_:
 | 
						|
        for i, line in enumerate(file_):
 | 
						|
            yield ujson.loads(line)['body']
 | 
						|
 | 
						|
 | 
						|
pre_format_re = re.compile(r'^[\`\*\~]')
 | 
						|
post_format_re = re.compile(r'[\`\*\~]$')
 | 
						|
url_re = re.compile(r'\[([^]]+)\]\(%%URL\)')
 | 
						|
link_re = re.compile(r'\[([^]]+)\]\(https?://[^\)]+\)')
 | 
						|
def strip_meta(text):
 | 
						|
    text = link_re.sub(r'\1', text)
 | 
						|
    text = text.replace('>', '>').replace('<', '<')
 | 
						|
    text = pre_format_re.sub('', text)
 | 
						|
    text = post_format_re.sub('', text)
 | 
						|
    return text.strip()
 | 
						|
 | 
						|
 | 
						|
def save_parses(batch_id, input_, out_dir, n_threads, batch_size):
 | 
						|
    out_loc = path.join(out_dir, '%d.bin' % batch_id)
 | 
						|
    if path.exists(out_loc):
 | 
						|
        return None
 | 
						|
    print('Batch', batch_id)
 | 
						|
    nlp = spacy.en.English()
 | 
						|
    nlp.matcher = None
 | 
						|
    with open(out_loc, 'wb') as file_:
 | 
						|
        texts = (strip_meta(text) for text in input_)
 | 
						|
        texts = (text for text in texts if text.strip())
 | 
						|
        for doc in nlp.pipe(texts, batch_size=batch_size, n_threads=n_threads):
 | 
						|
            file_.write(doc.to_bytes())
 | 
						|
 | 
						|
@plac.annotations(
 | 
						|
    in_loc=("Location of input file"),
 | 
						|
    out_dir=("Location of input file"),
 | 
						|
    n_process=("Number of processes", "option", "p", int),
 | 
						|
    n_thread=("Number of threads per process", "option", "t", int),
 | 
						|
    batch_size=("Number of texts to accumulate in a buffer", "option", "b", int)
 | 
						|
)
 | 
						|
def main(in_loc, out_dir, n_process=1, n_thread=4, batch_size=100):
 | 
						|
    if not path.exists(out_dir):
 | 
						|
        path.join(out_dir)
 | 
						|
    if n_process >= 2:
 | 
						|
        texts = partition(200000, iter_comments(in_loc))
 | 
						|
        parallelize(save_parses, enumerate(texts), n_process, [out_dir, n_thread, batch_size],
 | 
						|
                   backend='multiprocessing')
 | 
						|
    else:
 | 
						|
        save_parses(0, iter_comments(in_loc), out_dir, n_thread, batch_size)
 | 
						|
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    plac.call(main)
 |