mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	## Description Related issues: #2379 (should be fixed by separating model tests) * **total execution time down from > 300 seconds to under 60 seconds** 🎉 * removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure * changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version) * merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways) * tidied up and rewrote existing tests wherever possible ### Todo - [ ] move tests to `/tests` and adjust CI commands accordingly - [x] move model test suite from internal repo to `spacy-models` - [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~ - [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted - [ ] update documentation on how to run tests ### Types of change enhancement, tests ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
		
			
				
	
	
		
			88 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			88 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # coding: utf-8
 | |
| from __future__ import unicode_literals
 | |
| 
 | |
| import pytest
 | |
| from spacy.pipeline import EntityRecognizer
 | |
| from spacy.vocab import Vocab
 | |
| from spacy.syntax.ner import BiluoPushDown
 | |
| from spacy.gold import GoldParse
 | |
| from spacy.tokens import Doc
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def vocab():
 | |
|     return Vocab()
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def doc(vocab):
 | |
|     return Doc(vocab, words=['Casey', 'went', 'to', 'New', 'York', '.'])
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def entity_annots(doc):
 | |
|     casey = doc[0:1]
 | |
|     ny = doc[3:5]
 | |
|     return [(casey.start_char, casey.end_char, 'PERSON'),
 | |
|             (ny.start_char, ny.end_char, 'GPE')]
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def entity_types(entity_annots):
 | |
|     return sorted(set([label for (s, e, label) in entity_annots]))
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def tsys(vocab, entity_types):
 | |
|     actions = BiluoPushDown.get_actions(entity_types=entity_types)
 | |
|     return BiluoPushDown(vocab.strings, actions)
 | |
| 
 | |
| 
 | |
| def test_get_oracle_moves(tsys, doc, entity_annots):
 | |
|     gold = GoldParse(doc, entities=entity_annots)
 | |
|     tsys.preprocess_gold(gold)
 | |
|     act_classes = tsys.get_oracle_sequence(doc, gold)
 | |
|     names = [tsys.get_class_name(act) for act in act_classes]
 | |
|     assert names == ['U-PERSON', 'O', 'O', 'B-GPE', 'L-GPE', 'O']
 | |
| 
 | |
| def test_get_oracle_moves_negative_entities(tsys, doc, entity_annots):
 | |
|     entity_annots = [(s, e, '!' + label) for s, e, label in entity_annots]
 | |
|     gold = GoldParse(doc, entities=entity_annots)
 | |
|     for i, tag in enumerate(gold.ner):
 | |
|         if tag == 'L-!GPE':
 | |
|             gold.ner[i] = '-'
 | |
|     tsys.preprocess_gold(gold)
 | |
|     act_classes = tsys.get_oracle_sequence(doc, gold)
 | |
|     names = [tsys.get_class_name(act) for act in act_classes]
 | |
| 
 | |
| 
 | |
| def test_get_oracle_moves_negative_entities2(tsys, vocab):
 | |
|     doc = Doc(vocab, words=['A', 'B', 'C', 'D'])
 | |
|     gold = GoldParse(doc, entities=[])
 | |
|     gold.ner = ['B-!PERSON', 'L-!PERSON', 'B-!PERSON', 'L-!PERSON']
 | |
|     tsys.preprocess_gold(gold)
 | |
|     act_classes = tsys.get_oracle_sequence(doc, gold)
 | |
|     names = [tsys.get_class_name(act) for act in act_classes]
 | |
| 
 | |
| 
 | |
| def test_get_oracle_moves_negative_O(tsys, vocab):
 | |
|     doc = Doc(vocab, words=['A', 'B', 'C', 'D'])
 | |
|     gold = GoldParse(doc, entities=[])
 | |
|     gold.ner = ['O', '!O', 'O', '!O']
 | |
|     tsys.preprocess_gold(gold)
 | |
|     act_classes = tsys.get_oracle_sequence(doc, gold)
 | |
|     names = [tsys.get_class_name(act) for act in act_classes]
 | |
| 
 | |
| 
 | |
| def test_doc_add_entities_set_ents_iob(en_vocab):
 | |
|     doc = Doc(en_vocab, words=["This", "is", "a", "lion"])
 | |
|     ner = EntityRecognizer(en_vocab)
 | |
|     ner.begin_training([])
 | |
|     ner(doc)
 | |
|     assert len(list(doc.ents)) == 0
 | |
|     assert [w.ent_iob_ for w in doc] == (['O'] * len(doc))
 | |
|     doc.ents = [(doc.vocab.strings['ANIMAL'], 3, 4)]
 | |
|     assert [w.ent_iob_ for w in doc] == ['', '', '', 'B']
 | |
|     doc.ents = [(doc.vocab.strings['WORD'], 0, 2)]
 | |
|     assert [w.ent_iob_ for w in doc] == ['B', 'I', '', '']
 |