mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			60 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			60 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # coding: utf8
 | |
| from __future__ import unicode_literals
 | |
| 
 | |
| import pytest
 | |
| import random
 | |
| import numpy.random
 | |
| from spacy.language import Language
 | |
| from spacy.pipeline import TextCategorizer
 | |
| from spacy.tokens import Doc
 | |
| from spacy.gold import GoldParse
 | |
| 
 | |
| 
 | |
| @pytest.mark.skip(reason="Test is flakey when run with others")
 | |
| def test_simple_train():
 | |
|     nlp = Language()
 | |
|     nlp.add_pipe(nlp.create_pipe('textcat'))
 | |
|     nlp.get_pipe('textcat').add_label('answer')
 | |
|     nlp.begin_training()
 | |
|     for i in range(5):
 | |
|         for text, answer in [('aaaa', 1.), ('bbbb', 0), ('aa', 1.),
 | |
|                             ('bbbbbbbbb', 0.), ('aaaaaa', 1)]:
 | |
|             nlp.update([text], [{'cats': {'answer': answer}}])
 | |
|     doc = nlp('aaa')
 | |
|     assert 'answer' in doc.cats
 | |
|     assert doc.cats['answer'] >= 0.5
 | |
| 
 | |
| 
 | |
| @pytest.mark.skip(reason="Test is flakey when run with others")
 | |
| def test_textcat_learns_multilabel():
 | |
|     random.seed(5)
 | |
|     numpy.random.seed(5)
 | |
|     docs = []
 | |
|     nlp = Language()
 | |
|     letters = ['a', 'b', 'c']
 | |
|     for w1 in letters:
 | |
|         for w2 in letters:
 | |
|             cats = {letter: float(w2==letter) for letter in letters}
 | |
|             docs.append((Doc(nlp.vocab, words=['d']*3 + [w1, w2] + ['d']*3), cats))
 | |
|     random.shuffle(docs)
 | |
|     model = TextCategorizer(nlp.vocab, width=8)
 | |
|     for letter in letters:
 | |
|         model.add_label(letter)
 | |
|     optimizer = model.begin_training()
 | |
|     for i in range(30):
 | |
|         losses = {}
 | |
|         Ys = [GoldParse(doc, cats=cats) for doc, cats in docs]
 | |
|         Xs = [doc for doc, cats in docs]
 | |
|         model.update(Xs, Ys, sgd=optimizer, losses=losses)
 | |
|         random.shuffle(docs)
 | |
|     for w1 in letters:
 | |
|         for w2 in letters:
 | |
|             doc = Doc(nlp.vocab, words=['d']*3 + [w1, w2] + ['d']*3)
 | |
|             truth = {letter: w2==letter for letter in letters}
 | |
|             model(doc)
 | |
|             for cat, score in doc.cats.items():
 | |
|                 if not truth[cat]:
 | |
|                     assert score < 0.5
 | |
|                 else:
 | |
|                     assert score > 0.5
 |