mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	This PR adds a test for an untested case of `Span.get_lca_matrix`, and fixes a bug for that scenario, which I introduced in [this PR](https://github.com/explosion/spaCy/pull/3089) (sorry!). ## Description The previous implementation of get_lca_matrix was failing for the case `doc[j:k].get_lca_matrix()` where `j > 0`. A test has been added for this case and the bug has been fixed. ### Types of change Bug fix ## Checklist - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
		
			
				
	
	
		
			178 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			178 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# coding: utf-8
 | 
						|
from __future__ import unicode_literals
 | 
						|
 | 
						|
from ..util import get_doc
 | 
						|
from ...attrs import ORTH, LENGTH
 | 
						|
from ...tokens import Doc
 | 
						|
from ...vocab import Vocab
 | 
						|
 | 
						|
import pytest
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def doc(en_tokenizer):
 | 
						|
    text = "This is a sentence. This is another sentence. And a third."
 | 
						|
    heads = [1, 0, 1, -2, -3, 1, 0, 1, -2, -3, 0, 1, -2, -1]
 | 
						|
    deps = ['nsubj', 'ROOT', 'det', 'attr', 'punct', 'nsubj', 'ROOT', 'det',
 | 
						|
            'attr', 'punct', 'ROOT', 'det', 'npadvmod', 'punct']
 | 
						|
    tokens = en_tokenizer(text)
 | 
						|
    return get_doc(tokens.vocab, [t.text for t in tokens], heads=heads, deps=deps)
 | 
						|
 | 
						|
 | 
						|
def test_spans_sent_spans(doc):
 | 
						|
    sents = list(doc.sents)
 | 
						|
    assert sents[0].start == 0
 | 
						|
    assert sents[0].end == 5
 | 
						|
    assert len(sents) == 3
 | 
						|
    assert sum(len(sent) for sent in sents) == len(doc)
 | 
						|
 | 
						|
 | 
						|
def test_spans_root(doc):
 | 
						|
    span = doc[2:4]
 | 
						|
    assert len(span) == 2
 | 
						|
    assert span.text == 'a sentence'
 | 
						|
    assert span.root.text == 'sentence'
 | 
						|
    assert span.root.head.text == 'is'
 | 
						|
 | 
						|
def test_spans_string_fn(doc):
 | 
						|
    span = doc[0:4]
 | 
						|
    assert len(span) == 4
 | 
						|
    assert span.text == 'This is a sentence'
 | 
						|
    assert span.upper_ == 'THIS IS A SENTENCE'
 | 
						|
    assert span.lower_ == 'this is a sentence'
 | 
						|
 | 
						|
def test_spans_root2(en_tokenizer):
 | 
						|
    text = "through North and South Carolina"
 | 
						|
    heads = [0, 3, -1, -2, -4]
 | 
						|
    tokens = en_tokenizer(text)
 | 
						|
    doc = get_doc(tokens.vocab, [t.text for t in tokens], heads=heads)
 | 
						|
    assert doc[-2:].root.text == 'Carolina'
 | 
						|
 | 
						|
 | 
						|
def test_spans_span_sent(doc):
 | 
						|
    """Test span.sent property"""
 | 
						|
    assert len(list(doc.sents))
 | 
						|
    assert doc[:2].sent.root.text == 'is'
 | 
						|
    assert doc[:2].sent.text == 'This is a sentence .'
 | 
						|
    assert doc[6:7].sent.root.left_edge.text == 'This'
 | 
						|
 | 
						|
 | 
						|
def test_spans_lca_matrix(en_tokenizer):
 | 
						|
    """Test span's lca matrix generation"""
 | 
						|
    tokens = en_tokenizer('the lazy dog slept')
 | 
						|
    doc = get_doc(tokens.vocab, [t.text for t in tokens], heads=[2, 1, 1, 0])
 | 
						|
    lca = doc[:2].get_lca_matrix()
 | 
						|
    assert lca.shape == (2, 2)
 | 
						|
    assert lca[0, 0] == 0  # the & the -> the
 | 
						|
    assert lca[0, 1] == -1 # the & lazy -> dog (out of span)
 | 
						|
    assert lca[1, 0] == -1 # lazy & the -> dog (out of span)
 | 
						|
    assert lca[1, 1] == 1  # lazy & lazy -> lazy
 | 
						|
 | 
						|
    lca = doc[1:].get_lca_matrix()
 | 
						|
    assert lca.shape == (3, 3)
 | 
						|
    assert lca[0, 0] == 0 # lazy & lazy -> lazy
 | 
						|
    assert lca[0, 1] == 1 # lazy & dog -> dog
 | 
						|
    assert lca[0, 2] == 2 # lazy & slept -> slept
 | 
						|
 | 
						|
    lca = doc[2:].get_lca_matrix()
 | 
						|
    assert lca.shape == (2, 2)
 | 
						|
    assert lca[0, 0] == 0 # dog & dog -> dog
 | 
						|
    assert lca[0, 1] == 1 # dog & slept -> slept
 | 
						|
    assert lca[1, 0] == 1 # slept & dog -> slept
 | 
						|
    assert lca[1, 1] == 1 # slept & slept -> slept
 | 
						|
 | 
						|
 | 
						|
def test_span_similarity_match():
 | 
						|
    doc = Doc(Vocab(), words=['a', 'b', 'a', 'b'])
 | 
						|
    span1 = doc[:2]
 | 
						|
    span2 = doc[2:]
 | 
						|
    assert span1.similarity(span2) == 1.0
 | 
						|
    assert span1.similarity(doc) == 0.0
 | 
						|
    assert span1[:1].similarity(doc.vocab['a']) == 1.0
 | 
						|
 | 
						|
 | 
						|
def test_spans_default_sentiment(en_tokenizer):
 | 
						|
    """Test span.sentiment property's default averaging behaviour"""
 | 
						|
    text = "good stuff bad stuff"
 | 
						|
    tokens = en_tokenizer(text)
 | 
						|
    tokens.vocab[tokens[0].text].sentiment = 3.0
 | 
						|
    tokens.vocab[tokens[2].text].sentiment = -2.0
 | 
						|
    doc = get_doc(tokens.vocab, [t.text for t in tokens])
 | 
						|
    assert doc[:2].sentiment == 3.0 / 2
 | 
						|
    assert doc[-2:].sentiment == -2. / 2
 | 
						|
    assert doc[:-1].sentiment == (3.+-2) / 3.
 | 
						|
 | 
						|
 | 
						|
def test_spans_override_sentiment(en_tokenizer):
 | 
						|
    """Test span.sentiment property's default averaging behaviour"""
 | 
						|
    text = "good stuff bad stuff"
 | 
						|
    tokens = en_tokenizer(text)
 | 
						|
    tokens.vocab[tokens[0].text].sentiment = 3.0
 | 
						|
    tokens.vocab[tokens[2].text].sentiment = -2.0
 | 
						|
    doc = get_doc(tokens.vocab, [t.text for t in tokens])
 | 
						|
    doc.user_span_hooks['sentiment'] = lambda span: 10.0
 | 
						|
    assert doc[:2].sentiment == 10.0
 | 
						|
    assert doc[-2:].sentiment == 10.0
 | 
						|
    assert doc[:-1].sentiment == 10.0
 | 
						|
 | 
						|
 | 
						|
def test_spans_are_hashable(en_tokenizer):
 | 
						|
    """Test spans can be hashed."""
 | 
						|
    text = "good stuff bad stuff"
 | 
						|
    tokens = en_tokenizer(text)
 | 
						|
    span1 = tokens[:2]
 | 
						|
    span2 = tokens[2:4]
 | 
						|
    assert hash(span1) != hash(span2)
 | 
						|
    span3 = tokens[0:2]
 | 
						|
    assert hash(span3) == hash(span1)
 | 
						|
 | 
						|
 | 
						|
def test_spans_by_character(doc):
 | 
						|
    span1 = doc[1:-2]
 | 
						|
    span2 = doc.char_span(span1.start_char, span1.end_char, label='GPE')
 | 
						|
    assert span1.start_char == span2.start_char
 | 
						|
    assert span1.end_char == span2.end_char
 | 
						|
    assert span2.label_ == 'GPE'
 | 
						|
 | 
						|
 | 
						|
def test_span_to_array(doc):
 | 
						|
    span = doc[1:-2]
 | 
						|
    arr = span.to_array([ORTH, LENGTH])
 | 
						|
    assert arr.shape == (len(span), 2)
 | 
						|
    assert arr[0, 0] == span[0].orth
 | 
						|
    assert arr[0, 1] == len(span[0])
 | 
						|
 | 
						|
 | 
						|
def test_span_as_doc(doc):
 | 
						|
    span = doc[4:10]
 | 
						|
    span_doc = span.as_doc()
 | 
						|
    assert span.text == span_doc.text.strip()
 | 
						|
 | 
						|
def test_span_ents_property(doc):
 | 
						|
    """Test span.ents for the """
 | 
						|
    doc.ents = [
 | 
						|
        (doc.vocab.strings['PRODUCT'], 0, 1),
 | 
						|
        (doc.vocab.strings['PRODUCT'], 7, 8),
 | 
						|
        (doc.vocab.strings['PRODUCT'], 11, 14)
 | 
						|
    ]
 | 
						|
    assert len(list(doc.ents)) == 3
 | 
						|
    sentences = list(doc.sents)
 | 
						|
    assert len(sentences) == 3
 | 
						|
    assert len(sentences[0].ents) == 1
 | 
						|
    # First sentence, also tests start of sentence
 | 
						|
    assert sentences[0].ents[0].text == "This"
 | 
						|
    assert sentences[0].ents[0].label_ == "PRODUCT"
 | 
						|
    assert sentences[0].ents[0].start == 0
 | 
						|
    assert sentences[0].ents[0].end == 1
 | 
						|
    # Second sentence
 | 
						|
    assert len(sentences[1].ents) == 1
 | 
						|
    assert sentences[1].ents[0].text == "another"
 | 
						|
    assert sentences[1].ents[0].label_ == "PRODUCT"
 | 
						|
    assert sentences[1].ents[0].start == 7
 | 
						|
    assert sentences[1].ents[0].end == 8
 | 
						|
    # Third sentence ents, Also tests end of sentence
 | 
						|
    assert sentences[2].ents[0].text == "a third ."
 | 
						|
    assert sentences[2].ents[0].label_ == "PRODUCT"
 | 
						|
    assert sentences[2].ents[0].start == 11
 | 
						|
    assert sentences[2].ents[0].end == 14
 |