mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			76 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			76 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# coding: utf8
 | 
						|
from __future__ import unicode_literals
 | 
						|
 | 
						|
from .doc import Doc
 | 
						|
from ..symbols import HEAD, TAG, DEP, ENT_IOB, ENT_TYPE
 | 
						|
 | 
						|
 | 
						|
def merge_ents(doc):
 | 
						|
    """Helper: merge adjacent entities into single tokens; modifies the doc."""
 | 
						|
    for ent in doc.ents:
 | 
						|
        ent.merge(tag=ent.root.tag_, lemma=ent.text, ent_type=ent.label_)
 | 
						|
    return doc
 | 
						|
 | 
						|
 | 
						|
def format_POS(token, light, flat):
 | 
						|
    """Helper: form the POS output for a token."""
 | 
						|
    subtree = dict([
 | 
						|
        ("word", token.text),
 | 
						|
        ("lemma", token.lemma_),  # trigger
 | 
						|
        ("NE", token.ent_type_),  # trigger
 | 
						|
        ("POS_fine", token.tag_),
 | 
						|
        ("POS_coarse", token.pos_),
 | 
						|
        ("arc", token.dep_),
 | 
						|
        ("modifiers", [])
 | 
						|
    ])
 | 
						|
    if light:
 | 
						|
        subtree.pop("lemma")
 | 
						|
        subtree.pop("NE")
 | 
						|
    if flat:
 | 
						|
        subtree.pop("arc")
 | 
						|
        subtree.pop("modifiers")
 | 
						|
    return subtree
 | 
						|
 | 
						|
 | 
						|
def POS_tree(root, light=False, flat=False):
 | 
						|
    """Helper: generate a POS tree for a root token. The doc must have
 | 
						|
    `merge_ents(doc)` ran on it.
 | 
						|
    """
 | 
						|
    subtree = format_POS(root, light=light, flat=flat)
 | 
						|
    if not flat:
 | 
						|
        for c in root.children:
 | 
						|
            subtree["modifiers"].append(POS_tree(c))
 | 
						|
    return subtree
 | 
						|
 | 
						|
 | 
						|
def parse_tree(doc, light=False, flat=False):
 | 
						|
    """Make a copy of the doc and construct a syntactic parse tree similar to
 | 
						|
    displaCy. Generates the POS tree for all sentences in a doc.
 | 
						|
 | 
						|
    doc (Doc): The doc for parsing.
 | 
						|
    RETURNS (dict): The parse tree.
 | 
						|
 | 
						|
    EXAMPLE:
 | 
						|
        >>> doc = nlp('Bob brought Alice the pizza. Alice ate the pizza.')
 | 
						|
        >>> trees = doc.print_tree()
 | 
						|
        >>> trees[1]
 | 
						|
        {'modifiers': [
 | 
						|
            {'modifiers': [], 'NE': 'PERSON', 'word': 'Alice', 'arc': 'nsubj',
 | 
						|
             'POS_coarse': 'PROPN', 'POS_fine': 'NNP', 'lemma': 'Alice'},
 | 
						|
            {'modifiers': [
 | 
						|
                {'modifiers': [], 'NE': '', 'word': 'the', 'arc': 'det',
 | 
						|
                 'POS_coarse': 'DET', 'POS_fine': 'DT', 'lemma': 'the'}],
 | 
						|
             'NE': '', 'word': 'pizza', 'arc': 'dobj', 'POS_coarse': 'NOUN',
 | 
						|
             'POS_fine': 'NN', 'lemma': 'pizza'},
 | 
						|
            {'modifiers': [], 'NE': '', 'word': '.', 'arc': 'punct',
 | 
						|
             'POS_coarse': 'PUNCT', 'POS_fine': '.', 'lemma': '.'}],
 | 
						|
            'NE': '', 'word': 'ate', 'arc': 'ROOT', 'POS_coarse': 'VERB',
 | 
						|
            'POS_fine': 'VBD', 'lemma': 'eat'}
 | 
						|
    """
 | 
						|
    doc_clone = Doc(doc.vocab, words=[w.text for w in doc])
 | 
						|
    doc_clone.from_array([HEAD, TAG, DEP, ENT_IOB, ENT_TYPE],
 | 
						|
                         doc.to_array([HEAD, TAG, DEP, ENT_IOB, ENT_TYPE]))
 | 
						|
    merge_ents(doc_clone)  # merge the entities into single tokens first
 | 
						|
    return [POS_tree(sent.root, light=light, flat=flat)
 | 
						|
            for sent in doc_clone.sents]
 |