spaCy/spacy/lexeme.pyx
2015-07-05 09:11:55 +02:00

60 lines
1.8 KiB
Cython

# cython: embedsignature=True
from cpython.ref cimport Py_INCREF
from cymem.cymem cimport Pool
from murmurhash.mrmr cimport hash64
from libc.string cimport memset
from .orth cimport word_shape
from .typedefs cimport attr_t, flags_t
import numpy
memset(&EMPTY_LEXEME, 0, sizeof(LexemeC))
cdef int set_lex_struct_props(LexemeC* lex, dict props, StringStore string_store,
const float* empty_vec) except -1:
lex.length = props['length']
lex.orth = string_store[props['orth']]
lex.lower = string_store[props['lower']]
lex.norm = string_store[props['norm']]
lex.shape = string_store[props['shape']]
lex.prefix = string_store[props['prefix']]
lex.suffix = string_store[props['suffix']]
lex.cluster = props['cluster']
lex.prob = props['prob']
lex.sentiment = props['sentiment']
lex.flags = props['flags']
cdef flags_t sense_id = 0
cdef flags_t one = 1
lex.senses = 0
for _sense_id in props.get('senses', []):
sense_id = _sense_id
lex.senses |= one << sense_id
lex.repvec = empty_vec
cdef class Lexeme:
"""An entry in the vocabulary. A Lexeme has no string context --- it's a
word-type, as opposed to a word token. It therefore has no part-of-speech
tag, dependency parse, or lemma (lemmatization depends on the part-of-speech
tag).
"""
def __cinit__(self, int vec_size):
self.repvec = numpy.ndarray(shape=(vec_size,), dtype=numpy.float32)
@property
def has_repvec(self):
return self.l2_norm != 0
cpdef bint check(self, attr_id_t flag_id) except -1:
cdef flags_t one = 1
return self.flags & (one << flag_id)
cpdef bint has_sense(self, flags_t flag_id) except -1:
cdef flags_t one = 1
return self.senses & (one << flag_id)