mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-16 06:37:04 +03:00
100 lines
3.1 KiB
Python
100 lines
3.1 KiB
Python
import pytest
|
|
from numpy.testing import assert_equal
|
|
from spacy.attrs import SENT_START
|
|
|
|
from spacy import util
|
|
from spacy.training import Example
|
|
from spacy.lang.en import English
|
|
from spacy.language import Language
|
|
from spacy.tests.util import make_tempdir
|
|
|
|
|
|
def test_label_types():
|
|
nlp = Language()
|
|
senter = nlp.add_pipe("senter")
|
|
with pytest.raises(NotImplementedError):
|
|
senter.add_label("A")
|
|
|
|
|
|
SENT_STARTS = [0] * 14
|
|
SENT_STARTS[0] = 1
|
|
SENT_STARTS[5] = 1
|
|
SENT_STARTS[9] = 1
|
|
|
|
TRAIN_DATA = [
|
|
(
|
|
"I like green eggs. Eat blue ham. I like purple eggs.",
|
|
{"sent_starts": SENT_STARTS},
|
|
),
|
|
(
|
|
"She likes purple eggs. They hate ham. You like yellow eggs.",
|
|
{"sent_starts": SENT_STARTS},
|
|
),
|
|
]
|
|
|
|
|
|
def test_initialize_examples():
|
|
nlp = Language()
|
|
nlp.add_pipe("senter")
|
|
train_examples = []
|
|
for t in TRAIN_DATA:
|
|
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
|
|
# you shouldn't really call this more than once, but for testing it should be fine
|
|
nlp.initialize()
|
|
nlp.initialize(get_examples=lambda: train_examples)
|
|
with pytest.raises(TypeError):
|
|
nlp.initialize(get_examples=lambda: None)
|
|
with pytest.raises(TypeError):
|
|
nlp.initialize(get_examples=train_examples)
|
|
|
|
|
|
def test_overfitting_IO():
|
|
# Simple test to try and quickly overfit the senter - ensuring the ML models work correctly
|
|
nlp = English()
|
|
train_examples = []
|
|
for t in TRAIN_DATA:
|
|
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
|
|
# add some cases where SENT_START == -1
|
|
train_examples[0].reference[10].is_sent_start = False
|
|
train_examples[1].reference[1].is_sent_start = False
|
|
train_examples[1].reference[11].is_sent_start = False
|
|
|
|
nlp.add_pipe("senter")
|
|
optimizer = nlp.initialize()
|
|
|
|
for i in range(200):
|
|
losses = {}
|
|
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
|
assert losses["senter"] < 0.001
|
|
|
|
# test the trained model
|
|
test_text = TRAIN_DATA[0][0]
|
|
doc = nlp(test_text)
|
|
gold_sent_starts = [0] * 14
|
|
gold_sent_starts[0] = 1
|
|
gold_sent_starts[5] = 1
|
|
gold_sent_starts[9] = 1
|
|
assert [int(t.is_sent_start) for t in doc] == gold_sent_starts
|
|
|
|
# Also test the results are still the same after IO
|
|
with make_tempdir() as tmp_dir:
|
|
nlp.to_disk(tmp_dir)
|
|
nlp2 = util.load_model_from_path(tmp_dir)
|
|
doc2 = nlp2(test_text)
|
|
assert [int(t.is_sent_start) for t in doc2] == gold_sent_starts
|
|
|
|
# Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
|
|
texts = [
|
|
"Just a sentence.",
|
|
"Then one more sentence about London.",
|
|
"Here is another one.",
|
|
"I like London.",
|
|
]
|
|
batch_deps_1 = [doc.to_array([SENT_START]) for doc in nlp.pipe(texts)]
|
|
batch_deps_2 = [doc.to_array([SENT_START]) for doc in nlp.pipe(texts)]
|
|
no_batch_deps = [
|
|
doc.to_array([SENT_START]) for doc in [nlp(text) for text in texts]
|
|
]
|
|
assert_equal(batch_deps_1, batch_deps_2)
|
|
assert_equal(batch_deps_1, no_batch_deps)
|