spaCy/website/api/_data.json

227 lines
5.7 KiB
JSON

{
"sidebar": {
"Overview": {
"Architecture": "./",
"Annotation Specs": "annotation",
"Command Line": "cli",
"Functions": "top-level"
},
"Containers": {
"Doc": "doc",
"Token": "token",
"Span": "span",
"Lexeme": "lexeme"
},
"Pipeline": {
"Language": "language",
"Pipe": "pipe",
"Tensorizer": "tensorizer",
"Tagger": "tagger",
"DependencyParser": "dependencyparser",
"EntityRecognizer": "entityrecognizer",
"TextCategorizer": "textcategorizer",
"Tokenizer": "tokenizer",
"Lemmatizer": "lemmatizer",
"Matcher": "matcher",
"PhraseMatcher": "phrasematcher"
},
"Other": {
"Vocab": "vocab",
"StringStore": "stringstore",
"Vectors": "vectors",
"GoldParse": "goldparse",
"GoldCorpus": "goldcorpus"
}
},
"index": {
"title": "Architecture",
"next": "annotation",
"menu": {
"Basics": "basics",
"Neural Network Model": "nn-model",
"Cython Conventions": "cython"
}
},
"cli": {
"title": "Command Line Interface",
"teaser": "Download, train and package models, and debug spaCy.",
"source": "spacy/cli"
},
"top-level": {
"title": "Top-level Functions",
"menu": {
"spacy": "spacy",
"displacy": "displacy",
"Utility Functions": "util",
"Compatibility": "compat"
}
},
"language": {
"title": "Language",
"tag": "class",
"teaser": "A text-processing pipeline.",
"source": "spacy/language.py"
},
"doc": {
"title": "Doc",
"tag": "class",
"teaser": "A container for accessing linguistic annotations.",
"source": "spacy/tokens/doc.pyx"
},
"token": {
"title": "Token",
"tag": "class",
"source": "spacy/tokens/token.pyx"
},
"span": {
"title": "Span",
"tag": "class",
"source": "spacy/tokens/span.pyx"
},
"lexeme": {
"title": "Lexeme",
"tag": "class",
"source": "spacy/lexeme.pyx"
},
"vocab": {
"title": "Vocab",
"teaser": "A storage class for vocabulary and other data shared across a language.",
"tag": "class",
"source": "spacy/vocab.pyx"
},
"stringstore": {
"title": "StringStore",
"tag": "class",
"source": "spacy/strings.pyx"
},
"matcher": {
"title": "Matcher",
"teaser": "Match sequences of tokens, based on pattern rules.",
"tag": "class",
"source": "spacy/matcher.pyx"
},
"phrasematcher": {
"title": "PhraseMatcher",
"teaser": "Match sequences of tokens, based on documents.",
"tag": "class",
"tag_new": 2,
"source": "spacy/matcher.pyx"
},
"pipe": {
"title": "Pipe",
"teaser": "Abstract base class defining the API for pipeline components.",
"tag": "class",
"tag_new": 2,
"source": "spacy/pipeline.pyx"
},
"dependenyparser": {
"title": "DependencyParser",
"tag": "class",
"source": "spacy/pipeline.pyx"
},
"entityrecognizer": {
"title": "EntityRecognizer",
"teaser": "Annotate named entities on documents.",
"tag": "class",
"source": "spacy/pipeline.pyx"
},
"textcategorizer": {
"title": "TextCategorizer",
"teaser": "Add text categorization models to spaCy pipelines.",
"tag": "class",
"tag_new": 2,
"source": "spacy/pipeline.pyx"
},
"dependencyparser": {
"title": "DependencyParser",
"teaser": "Annotate syntactic dependencies on documents.",
"tag": "class",
"source": "spacy/pipeline.pyx"
},
"tokenizer": {
"title": "Tokenizer",
"teaser": "Segment text into words, punctuations marks etc.",
"tag": "class",
"source": "spacy/tokenizer.pyx"
},
"lemmatizer": {
"title": "Lemmatizer",
"teaser": "Assign the base forms of words.",
"tag": "class",
"source": "spacy/lemmatizer.py"
},
"tagger": {
"title": "Tagger",
"teaser": "Annotate part-of-speech tags on documents.",
"tag": "class",
"source": "spacy/pipeline.pyx"
},
"tensorizer": {
"title": "Tensorizer",
"teaser": "Add a tensor with position-sensitive meaning representations to a document.",
"tag": "class",
"tag_new": 2,
"source": "spacy/pipeline.pyx"
},
"goldparse": {
"title": "GoldParse",
"tag": "class",
"source": "spacy/gold.pyx"
},
"goldcorpus": {
"title": "GoldCorpus",
"teaser": "An annotated corpus, using the JSON file format.",
"tag": "class",
"tag_new": 2,
"source": "spacy/gold.pyx"
},
"vectors": {
"title": "Vectors",
"teaser": "Store, save and load word vectors.",
"tag": "class",
"tag_new": 2,
"source": "spacy/vectors.pyx"
},
"annotation": {
"title": "Annotation Specifications",
"teaser": "Schemes used for labels, tags and training data.",
"menu": {
"Tokenization": "tokenization",
"Sentence Boundaries": "sbd",
"POS Tagging": "pos-tagging",
"Lemmatization": "lemmatization",
"Dependencies": "dependency-parsing",
"Named Entities": "named-entities",
"Models & Training": "training"
}
}
}